Hopf-Galois Structures on Galois Extensions of Squarefree Degree, and Skew Braces of Squarefree Order

Nigel Byott

University of Exeter

19 June 2019

- Counting Hopf-Galois Structures
- 2 Counting Skew Braces

- Counting Hopf-Galois Structures
- 2 Counting Skew Braces
- Groups of Squarefree Order

- Counting Hopf-Galois Structures
- 2 Counting Skew Braces
- Groups of Squarefree Order
- Hopf-Galois Structures and Skew Braces of Squarefree Order (Joint with Ali Alabdali, University of Mosul, Iraq)

Definition

Let L/K be a finite extension of fields. A **Hopf-Galois structure** on L/K consists of a K-Hopf algebra H acting on L and making it into an H-Galois extension of K in the sense of Chase and Sweedler (1969),

Definition

Let L/K be a finite extension of fields. A **Hopf-Galois structure** on L/K consists of a K-Hopf algebra H acting on L and making it into an H-Galois extension of K in the sense of Chase and Sweedler (1969), i.e.

(i) $h \cdot (st) = \sum_{(h)} (h_{(1)} \cdot s)(h_{(2)} \cdot t)$ for all $h \in H$ and $s, t \in L$, where we write the comultiplication on H as $h \mapsto \sum_{(h)} h_{(1)} \otimes h_{(2)}$;

Definition

Let L/K be a finite extension of fields. A **Hopf-Galois structure** on L/K consists of a K-Hopf algebra H acting on L and making it into an H-Galois extension of K in the sense of Chase and Sweedler (1969), i.e.

- (i) $h \cdot (st) = \sum_{(h)} (h_{(1)} \cdot s)(h_{(2)} \cdot t)$ for all $h \in H$ and $s, t \in L$, where we write the comultiplication on H as $h \mapsto \sum_{(h)} h_{(1)} \otimes h_{(2)}$;
- (ii) $h \cdot 1 = \varepsilon(h)1$ for all $h \in H$, where $\varepsilon : H \to K$ is the counit of H;

Definition

Let L/K be a finite extension of fields. A **Hopf-Galois structure** on L/K consists of a K-Hopf algebra H acting on L and making it into an H-Galois extension of K in the sense of Chase and Sweedler (1969), i.e.

(i) $h \cdot (st) = \sum_{(h)} (h_{(1)} \cdot s)(h_{(2)} \cdot t)$ for all $h \in H$ and $s, t \in L$, where we write the comultiplication on H as $h \mapsto \sum_{(h)} h_{(1)} \otimes h_{(2)}$;

(ii)
$$h \cdot 1 = \varepsilon(h)1$$
 for all $h \in H$, where $\varepsilon : H \to K$ is the counit of H;

(iii) the K-linear map
$$\theta : A \otimes_{K} H \to \text{End}_{K}(A)$$
, given by $\theta(a \otimes h)(b) = a(h \cdot b)$, is bijective.

Definition

Let L/K be a finite extension of fields. A **Hopf-Galois structure** on L/K consists of a K-Hopf algebra H acting on L and making it into an H-Galois extension of K in the sense of Chase and Sweedler (1969), i.e.

(i) $h \cdot (st) = \sum_{(h)} (h_{(1)} \cdot s)(h_{(2)} \cdot t)$ for all $h \in H$ and $s, t \in L$, where we write the comultiplication on H as $h \mapsto \sum_{(h)} h_{(1)} \otimes h_{(2)}$;

(ii)
$$h \cdot 1 = \varepsilon(h)1$$
 for all $h \in H$, where $\varepsilon : H \to K$ is the counit of H;

(iii) the K-linear map
$$\theta : A \otimes_{\kappa} H \to \operatorname{End}_{\kappa}(A)$$
, given by $\theta(a \otimes h)(b) = a(h \cdot b)$, is bijective.

Example

If L/K is a Galois extension and $\Gamma = \text{Gal}(L/K)$, then the group algebra $H = K[\Gamma]$, with its natural action on L. gives a Hopf-Galois structure on L/K. This is the **classical** Hopf-Galois structure.

Nigel Byott (University of Exeter)

Squarefree HGS and Braces

We will be concerned with extensions L/K which are already Galois extensions.

We will be concerned with extensions L/K which are already Galois extensions.

In that case, we have

Theorem (Greither & Pareigis, 1987)

Let L/K be a Galois extension of fields, and let $\Gamma = \operatorname{Gal}(L/K)$. Then the Hopf-Galois structures on L/K correspond bijectively to regular subgroups G of $\operatorname{Perm}(\Gamma)$ which are normalised by the group $\lambda(\Gamma)$ of left translations by Γ .

We will be concerned with extensions L/K which are already Galois extensions.

In that case, we have

Theorem (Greither & Pareigis, 1987)

Let L/K be a Galois extension of fields, and let $\Gamma = \operatorname{Gal}(L/K)$. Then the Hopf-Galois structures on L/K correspond bijectively to regular subgroups G of $\operatorname{Perm}(\Gamma)$ which are normalised by the group $\lambda(\Gamma)$ of left translations by Γ .

We say $G \subset \operatorname{Perm}(\Gamma)$ is regular if any two (and hence all three) of the following hold:

We will be concerned with extensions L/K which are already Galois extensions.

In that case, we have

Theorem (Greither & Pareigis, 1987)

Let L/K be a Galois extension of fields, and let $\Gamma = \operatorname{Gal}(L/K)$. Then the Hopf-Galois structures on L/K correspond bijectively to regular subgroups G of $\operatorname{Perm}(\Gamma)$ which are normalised by the group $\lambda(\Gamma)$ of left translations by Γ .

We say $G \subset \operatorname{Perm}(\Gamma)$ is regular if any two (and hence all three) of the following hold:

• G acts transitively on Γ ;

We will be concerned with extensions L/K which are already Galois extensions.

In that case, we have

Theorem (Greither & Pareigis, 1987)

Let L/K be a Galois extension of fields, and let $\Gamma = \text{Gal}(L/K)$. Then the Hopf-Galois structures on L/K correspond bijectively to regular subgroups G of $\text{Perm}(\Gamma)$ which are normalised by the group $\lambda(\Gamma)$ of left translations by Γ .

We say $G \subset \text{Perm}(\Gamma)$ is regular if any two (and hence all three) of the following hold:

- G acts transitively on Γ;
- the stabiliser of some (any) element of Γ is $\{e_G\}$;

We will be concerned with extensions L/K which are already Galois extensions.

In that case, we have

Theorem (Greither & Pareigis, 1987)

Let L/K be a Galois extension of fields, and let $\Gamma = \operatorname{Gal}(L/K)$. Then the Hopf-Galois structures on L/K correspond bijectively to regular subgroups G of $\operatorname{Perm}(\Gamma)$ which are normalised by the group $\lambda(\Gamma)$ of left translations by Γ .

We say $G \subset \operatorname{Perm}(\Gamma)$ is regular if any two (and hence all three) of the following hold:

- G acts transitively on Γ ;
- the stabiliser of some (any) element of Γ is $\{e_G\}$;
- $|G| = |\Gamma|$.

The type of the Hopf-Galois structure is the isomorphism class of G.

The type of the Hopf-Galois structure is the isomorphism class of G.

Example

If $\Gamma \cong C_2 \times C_2$ then L/K has one Hopf-Galois structure of type $C_2 \times C_2$ (the classical one) and 3 of type C_4 .

The **type** of the Hopf-Galois structure is the isomorphism class of G.

Example

If $\Gamma \cong C_2 \times C_2$ then L/K has one Hopf-Galois structure of type $C_2 \times C_2$ (the classical one) and 3 of type C_4 .

Changing notation, we start with (abstract) finite groups Γ , G.

The type of the Hopf-Galois structure is the isomorphism class of G.

Example

If $\Gamma \cong C_2 \times C_2$ then L/K has one Hopf-Galois structure of type $C_2 \times C_2$ (the classical one) and 3 of type C_4 .

Changing notation, we start with (abstract) finite groups Γ , G.

Definition

 $e(\Gamma, G)$ is the number of Hopf-Galois structures of type G on a Galois extension with Galois group $\cong \Gamma$.

The type of the Hopf-Galois structure is the isomorphism class of G.

Example

If $\Gamma \cong C_2 \times C_2$ then L/K has one Hopf-Galois structure of type $C_2 \times C_2$ (the classical one) and 3 of type C_4 .

Changing notation, we start with (abstract) finite groups Γ , G.

Definition

 $e(\Gamma, G)$ is the number of Hopf-Galois structures of type G on a Galois extension with Galois group $\cong \Gamma$.

So $e(\Gamma, G)$ is just the number of regular subgroups in $Perm(\Gamma)$ which are isomorphic to G and normalised by $\lambda(\Gamma)$.

Nigel Byott (University of Exeter)

A regular embedding $\alpha : G \hookrightarrow \operatorname{Perm}(\Gamma)$ gives rise to a bijection

$$\hat{lpha}: \mathcal{G} o \mathsf{\Gamma}, \qquad \hat{lpha}(g) = lpha(g) \cdot e_{\mathsf{\Gamma}}$$

and hence an isomorphism $\operatorname{Perm}(\Gamma) \to \operatorname{Perm}(G)$.

A regular embedding $\alpha : G \hookrightarrow \operatorname{Perm}(\Gamma)$ gives rise to a bijection

$$\hat{\alpha}: \mathcal{G} \to \mathsf{\Gamma}, \qquad \hat{\alpha}(g) = \alpha(g) \cdot e_{\mathsf{\Gamma}}$$

and hence an isomorphism $\operatorname{Perm}(\Gamma) \to \operatorname{Perm}(G)$. Then the inclusion $\lambda(\Gamma) \to \operatorname{Perm}(\Gamma)$ translates to a regular embedding $\beta : \Gamma \to \operatorname{Perm}(G)$.

A regular embedding $\alpha : G \hookrightarrow \operatorname{Perm}(\Gamma)$ gives rise to a bijection

$$\hat{\alpha}: \mathcal{G} \to \mathsf{\Gamma}, \qquad \hat{\alpha}(g) = \alpha(g) \cdot e_{\mathsf{\Gamma}}$$

and hence an isomorphism $\operatorname{Perm}(\Gamma) \to \operatorname{Perm}(G)$. Then the inclusion $\lambda(\Gamma) \to \operatorname{Perm}(\Gamma)$ translates to a regular embedding $\beta : \Gamma \to \operatorname{Perm}(G)$.

We can reverse this process, so we get a bijection between regular embeddings $\alpha : G \hookrightarrow \operatorname{Perm}(\Gamma)$ and regular embeddings $\beta : \Gamma \to \operatorname{Perm}(G)$.

A regular embedding $\alpha : G \hookrightarrow \operatorname{Perm}(\Gamma)$ gives rise to a bijection

$$\hat{\alpha}: \mathcal{G} \to \mathsf{\Gamma}, \qquad \hat{\alpha}(g) = \alpha(g) \cdot e_{\mathsf{\Gamma}}$$

and hence an isomorphism $\operatorname{Perm}(\Gamma) \to \operatorname{Perm}(G)$. Then the inclusion $\lambda(\Gamma) \to \operatorname{Perm}(\Gamma)$ translates to a regular embedding $\beta : \Gamma \to \operatorname{Perm}(G)$.

We can reverse this process, so we get a bijection between regular embeddings $\alpha : G \hookrightarrow \operatorname{Perm}(\Gamma)$ and regular embeddings $\beta : \Gamma \to \operatorname{Perm}(G)$.

 $\alpha(G)$ is normalised by $\lambda(\Gamma) \Leftrightarrow \lambda(\Gamma) \subset \operatorname{Norm}_{\operatorname{Perm}(\Gamma)}(\alpha(G))$

A regular embedding $\alpha : G \hookrightarrow \operatorname{Perm}(\Gamma)$ gives rise to a bijection

$$\hat{\alpha}: \mathbf{G} \to \mathbf{\Gamma}, \qquad \hat{\alpha}(\mathbf{g}) = \alpha(\mathbf{g}) \cdot \mathbf{e}_{\mathbf{\Gamma}}$$

and hence an isomorphism $\operatorname{Perm}(\Gamma) \to \operatorname{Perm}(G)$. Then the inclusion $\lambda(\Gamma) \to \operatorname{Perm}(\Gamma)$ translates to a regular embedding $\beta : \Gamma \to \operatorname{Perm}(G)$.

We can reverse this process, so we get a bijection between regular embeddings $\alpha : G \hookrightarrow \operatorname{Perm}(\Gamma)$ and regular embeddings $\beta : \Gamma \to \operatorname{Perm}(G)$.

$$\alpha(G)$$
 is normalised by $\lambda(\Gamma) \Leftrightarrow \lambda(\Gamma) \subset \operatorname{Norm}_{\operatorname{Perm}(\Gamma)}(\alpha(G))$
 $\Leftrightarrow \beta(\Gamma) \subset \operatorname{Norm}_{\operatorname{Perm}(G)}(G) = G$

A regular embedding $\alpha : G \hookrightarrow \operatorname{Perm}(\Gamma)$ gives rise to a bijection

$$\hat{\alpha}: \mathbf{G} \to \mathbf{\Gamma}, \qquad \hat{\alpha}(\mathbf{g}) = \alpha(\mathbf{g}) \cdot \mathbf{e}_{\mathbf{\Gamma}}$$

and hence an isomorphism $\operatorname{Perm}(\Gamma) \to \operatorname{Perm}(G)$. Then the inclusion $\lambda(\Gamma) \to \operatorname{Perm}(\Gamma)$ translates to a regular embedding $\beta : \Gamma \to \operatorname{Perm}(G)$.

We can reverse this process, so we get a bijection between regular embeddings $\alpha : G \hookrightarrow \operatorname{Perm}(\Gamma)$ and regular embeddings $\beta : \Gamma \to \operatorname{Perm}(G)$.

$$\begin{array}{ll} \alpha(G) \text{ is normalised by } \lambda(\Gamma) & \Leftrightarrow & \lambda(\Gamma) \subset \operatorname{Norm}_{\operatorname{Perm}(\Gamma)}(\alpha(G)) \\ & \Leftrightarrow & \beta(\Gamma) \subset \operatorname{Norm}_{\operatorname{Perm}(G)}(G) = G \\ & \Leftrightarrow & \beta(\Gamma) \subset G \rtimes \operatorname{Aut}(G) =: \operatorname{Hol}(G). \end{array}$$

A regular embedding $\alpha : G \hookrightarrow \operatorname{Perm}(\Gamma)$ gives rise to a bijection

$$\hat{\alpha}: \mathbf{G} \to \mathbf{\Gamma}, \qquad \hat{\alpha}(\mathbf{g}) = \alpha(\mathbf{g}) \cdot \mathbf{e}_{\mathbf{\Gamma}}$$

and hence an isomorphism $\operatorname{Perm}(\Gamma) \to \operatorname{Perm}(G)$. Then the inclusion $\lambda(\Gamma) \to \operatorname{Perm}(\Gamma)$ translates to a regular embedding $\beta : \Gamma \to \operatorname{Perm}(G)$.

We can reverse this process, so we get a bijection between regular embeddings $\alpha : G \hookrightarrow \operatorname{Perm}(\Gamma)$ and regular embeddings $\beta : \Gamma \to \operatorname{Perm}(G)$.

$$\begin{array}{ll} \alpha(G) \text{ is normalised by } \lambda(\Gamma) & \Leftrightarrow & \lambda(\Gamma) \subset \operatorname{Norm}_{\operatorname{Perm}(\Gamma)}(\alpha(G)) \\ & \Leftrightarrow & \beta(\Gamma) \subset \operatorname{Norm}_{\operatorname{Perm}(G)}(G) = G \\ & \Leftrightarrow & \beta(\Gamma) \subset G \rtimes \operatorname{Aut}(G) =: \operatorname{Hol}(G). \end{array}$$

Hol(G) is the **holomorph** of G.

The regular subgroups in $\operatorname{Perm}(\Gamma)$ isomorphic to G are the $\operatorname{Aut}(G)$ -orbits of regular embeddings $\alpha : G \to \operatorname{Perm}(\Gamma)$.

The regular subgroups in $\operatorname{Perm}(\Gamma)$ isomorphic to G are the $\operatorname{Aut}(G)$ -orbits of regular embeddings $\alpha : G \to \operatorname{Perm}(\Gamma)$.

Thus

 $e(\Gamma, G) = \# \{ \operatorname{Aut}(G) \text{-orbits of regular embeddings } \alpha : G \to \operatorname{Perm}(\Gamma)$ with $\alpha(G)$ normalised by $\lambda(\Gamma) \}$

The regular subgroups in $\operatorname{Perm}(\Gamma)$ isomorphic to G are the $\operatorname{Aut}(G)$ -orbits of regular embeddings $\alpha : G \to \operatorname{Perm}(\Gamma)$.

Thus

 $e(\Gamma, G) = \# \{ \operatorname{Aut}(G) \text{-orbits of regular embeddings } \alpha : G \to \operatorname{Perm}(\Gamma)$ with $\alpha(G)$ normalised by $\lambda(\Gamma) \}$ = $\frac{\# \{ \operatorname{regular embeddings } \beta : \Gamma \to \operatorname{Hol}(G) \}}{|\operatorname{Aut}(G)|}$ The regular subgroups in $\operatorname{Perm}(\Gamma)$ isomorphic to G are the $\operatorname{Aut}(G)$ -orbits of regular embeddings $\alpha : G \to \operatorname{Perm}(\Gamma)$.

Thus

 $e(\Gamma, G) = \# \{ \operatorname{Aut}(G) \text{-orbits of regular embeddings } \alpha : G \to \operatorname{Perm}(\Gamma)$ with $\alpha(G)$ normalised by $\lambda(\Gamma) \}$ $= \frac{\# \{ \operatorname{regular embeddings } \beta : \Gamma \to \operatorname{Hol}(G) \}}{|\operatorname{Aut}(G)|}$ $= \frac{|\operatorname{Aut}(G)|}{|\operatorname{Aut}(\Gamma)|} \# \{ \operatorname{regular subgroups in Hol}(G) \text{ isomorphic to } \Gamma \}.$ The regular subgroups in $\operatorname{Perm}(\Gamma)$ isomorphic to G are the $\operatorname{Aut}(G)$ -orbits of regular embeddings $\alpha : G \to \operatorname{Perm}(\Gamma)$.

Thus

 $e(\Gamma, G) = \# \{ \operatorname{Aut}(G) \text{-orbits of regular embeddings } \alpha : G \to \operatorname{Perm}(\Gamma)$ with $\alpha(G)$ normalised by $\lambda(\Gamma) \}$ $= \frac{\# \{ \operatorname{regular embeddings } \beta : \Gamma \to \operatorname{Hol}(G) \}}{|\operatorname{Aut}(G)|}$ $= \frac{|\operatorname{Aut}(G)|}{|\operatorname{Aut}(\Gamma)|} \# \{ \operatorname{regular subgroups in Hol}(G) \text{ isomorphic to } \Gamma \}.$

So, to count the Hopf-Galois structures of type G on a field extension with Galois group Γ , it suffices to look for regular subgroups in Hol(G), which is much smaller group than Perm(Γ).

Definition

A (left) skew brace (B, +, *) is a set B with binary operations +, * such that

Definition

A (left) skew brace (B, +, *) is a set B with binary operations +, * such that

• (B,+) is a group (the additive group of B);

Definition

A (left) skew brace (B, +, *) is a set B with binary operations +, * such that

- (B, +) is a group (the additive group of B);
- (B,*) is a group (the multiplicative group of B);

Definition

A (left) skew brace (B, +, *) is a set B with binary operations +, * such that

- (B,+) is a group (the additive group of B);
- (B,*) is a group (the multiplicative group of B);
- $a * (b + c) = a * b a + a * c \forall a, b, c \in B$.

Definition

A (left) skew brace (B, +, *) is a set B with binary operations +, * such that

- (B,+) is a group (the additive group of B);
- (B,*) is a group (the multiplicative group of B);
- $a * (b + c) = a * b a + a * c \forall a, b, c \in B$.

(B, +, *) is a brace if (B, +) is abelian.

Definition

A (left) skew brace (B, +, *) is a set B with binary operations +, * such that

- (B,+) is a group (the additive group of B);
- (*B*,*) is a group (the multiplicative group of *B*);

•
$$a * (b + c) = a * b - a + a * c \forall a, b, c \in B.$$

(B, +, *) is a brace if (B, +) is abelian.

Braces were introduced by Rump (2007) to study non-degenerate involutive set-theoretical solutions of the Yang-Baxter Equation (YBE). They were generalised to skew braces by Guarnieri & Vendramin (2017). Skew braces give non-involutive solutions to YBE. If (B, +, *) is a skew brace, then we have a group homomorphism $\lambda : (B, *) \to \operatorname{Aut}(B, +), \qquad b \mapsto \lambda_b \text{ with } \lambda_b(a) = b * a - a.$ Thus (B, *) acts on (B, +). If (B, +, *) is a skew brace, then we have a group homomorphism

$$\lambda: (B,*)
ightarrow \operatorname{Aut}(B,+), \qquad b \mapsto \lambda_b \text{ with } \lambda_b(a) = b*a-a.$$

Thus (B, *) acts on (B, +).

We also have a bijection $i: (B, *) \rightarrow (B, +)$ induced by the identity map on *B*. This satisfies the 1-cocycle identity

$$i(bc) = i(b) + \lambda_b(i(c)).$$

If (B, +, *) is a skew brace, then we have a group homomorphism

$$\lambda: (B,*) o \operatorname{Aut}(B,+), \qquad b \mapsto \lambda_b \text{ with } \lambda_b(a) = b*a-a.$$

Thus (B, *) acts on (B, +).

We also have a bijection $i: (B, *) \rightarrow (B, +)$ induced by the identity map on *B*. This satisfies the 1-cocycle identity

$$i(bc) = i(b) + \lambda_b(i(c)).$$

Now $\operatorname{Hol}(B, +) = (B, +) \rtimes \operatorname{Aut}(B, +)$, and

$$(i,\lambda):(B,*)\to(B,+)\rtimes\operatorname{Aut}(B,+)$$

is a homomorphism. Indeed, it is a regular embedding.

If (B, +, *) is a skew brace, then we have a group homomorphism

$$\lambda: (B, *) \to \operatorname{Aut}(B, +), \qquad b \mapsto \lambda_b \text{ with } \lambda_b(a) = b * a - a.$$

Thus (B, *) acts on (B, +).

We also have a bijection $i: (B, *) \rightarrow (B, +)$ induced by the identity map on *B*. This satisfies the 1-cocycle identity

$$i(bc) = i(b) + \lambda_b(i(c)).$$

Now $\operatorname{Hol}(B, +) = (B, +) \rtimes \operatorname{Aut}(B, +)$, and

$$(i,\lambda):(B,*)\to(B,+)\rtimes\operatorname{Aut}(B,+)$$

is a homomorphism. Indeed, it is a regular embedding.

Conversely, given groups M, A, we can decompose a regular embedding $M \to \operatorname{Hol}(A)$ into a homomorphism $M \to Aut(A)$ and a bijective cocycle $M \to A$ with respect to the corresponding action of M on A.

Definition

Let b(M, A) be the number of left skew braces (up to isomorphism of skew braces) with multiplicative group isomorphic to M and additive group isomorphic to A.

Definition

Let b(M, A) be the number of left skew braces (up to isomorphism of skew braces) with multiplicative group isomorphic to M and additive group isomorphic to A.

Then b(M, A) is the number of $(Aut(M) \times Aut(A))$ -orbits of regular embeddings $M \to Hol(A)$.

Definition

Let b(M, A) be the number of left skew braces (up to isomorphism of skew braces) with multiplicative group isomorphic to M and additive group isomorphic to A.

Then b(M, A) is the number of $(Aut(M) \times Aut(A))$ -orbits of regular embeddings $M \to Hol(A)$.

Summary so far:

The two problems are closely related (but not equivalent):

Definition

Let b(M, A) be the number of left skew braces (up to isomorphism of skew braces) with multiplicative group isomorphic to M and additive group isomorphic to A.

Then b(M, A) is the number of $(Aut(M) \times Aut(A))$ -orbits of regular embeddings $M \to Hol(A)$.

Summary so far:

The two problems are closely related (but not equivalent):

(a) finding the number $e(\Gamma, G)$ of Hopf-Galois structures of type G on Galois extension of fields s with Galois group Γ ,

Definition

Let b(M, A) be the number of left skew braces (up to isomorphism of skew braces) with multiplicative group isomorphic to M and additive group isomorphic to A.

Then b(M, A) is the number of $(Aut(M) \times Aut(A))$ -orbits of regular embeddings $M \to Hol(A)$.

Summary so far:

The two problems are closely related (but not equivalent):

- (a) finding the number $e(\Gamma, G)$ of Hopf-Galois structures of type G on Galois extension of fields s with Galois group Γ , and
- (b) finding the number $b(\Gamma, G)$ of left skew braces (up to isomorphism) with multiplicative group Γ and additive group G.

Nigel Byott (University of Exeter)

$e(\Gamma, G) = #{\operatorname{Aut}(\Gamma)}$ -orbits of regular embeddings $\Gamma \to \operatorname{Hol}(G)$

$$\begin{split} e(\Gamma, G) &= & \#\{\operatorname{Aut}(\Gamma)\text{-orbits of regular embeddings } \Gamma \to \operatorname{Hol}(G)\} \\ &= & \frac{|\operatorname{Aut}(G)|}{|\operatorname{Aut}(\Gamma)|} \; \#\{\text{regular subgroups in } \operatorname{Hol}(G) \text{ isomorphic to } \Gamma\}, \end{split}$$

$$\begin{split} e(\Gamma, G) &= & \#\{\operatorname{Aut}(\Gamma)\text{-orbits of regular embeddings } \Gamma \to \operatorname{Hol}(G)\} \\ &= & \frac{|\operatorname{Aut}(G)|}{|\operatorname{Aut}(\Gamma)|} \; \#\{\text{regular subgroups in } \operatorname{Hol}(G) \text{ isomorphic to } \Gamma\}, \end{split}$$

$$b(\Gamma, G) = #{\operatorname{Aut}(\Gamma) \times \operatorname{Aut}(G)}$$
-orbits of regular
embeddings $\Gamma \to \operatorname{Hol}(G)$ }

$$\begin{split} e(\Gamma, G) &= & \#\{\operatorname{Aut}(\Gamma)\text{-orbits of regular embeddings } \Gamma \to \operatorname{Hol}(G)\} \\ &= & \frac{|\operatorname{Aut}(G)|}{|\operatorname{Aut}(\Gamma)|} \; \#\{\text{regular subgroups in } \operatorname{Hol}(G) \text{ isomorphic to } \Gamma\}, \end{split}$$

$$\begin{split} b(\Gamma, G) &= \# \{ \operatorname{Aut}(\Gamma) \times \operatorname{Aut}(G) \text{-orbits of regular} \\ & \text{embeddings } \Gamma \to \operatorname{Hol}(G) \} \\ &= \# \{ \operatorname{Aut}(G) \text{-orbits of regular subgroups in Hol}(G) \\ & \text{isomorphic to } \Gamma \}. \end{split}$$

$$\begin{split} e(\Gamma, G) &= & \#\{\operatorname{Aut}(\Gamma)\text{-orbits of regular embeddings } \Gamma \to \operatorname{Hol}(G)\} \\ &= & \frac{|\operatorname{Aut}(G)|}{|\operatorname{Aut}(\Gamma)|} \; \#\{\text{regular subgroups in } \operatorname{Hol}(G) \text{ isomorphic to } \Gamma\}, \end{split}$$

$$\begin{split} b(\Gamma, G) &= \# \{ \operatorname{Aut}(\Gamma) \times \operatorname{Aut}(G) \text{-orbits of regular} \\ & \text{embeddings } \Gamma \to \operatorname{Hol}(G) \} \\ &= \# \{ \operatorname{Aut}(G) \text{-orbits of regular subgroups in Hol}(G) \\ & \text{isomorphic to } \Gamma \}. \end{split}$$

Each of the groups $\operatorname{Aut}(\Gamma)$ and $\operatorname{Aut}(G)$ acts freely on the set of regular embeddings (so all orbits have the same size), but $\operatorname{Aut}(\Gamma) \times \operatorname{Aut}(G)$ does not act freely, and its orbits may have different sizes.

$$\begin{split} e(\Gamma, G) &= & \#\{\operatorname{Aut}(\Gamma)\text{-orbits of regular embeddings } \Gamma \to \operatorname{Hol}(G)\} \\ &= & \frac{|\operatorname{Aut}(G)|}{|\operatorname{Aut}(\Gamma)|} \; \#\{\text{regular subgroups in } \operatorname{Hol}(G) \text{ isomorphic to } \Gamma\}, \end{split}$$

$$\begin{split} b(\Gamma, G) &= \# \{ \operatorname{Aut}(\Gamma) \times \operatorname{Aut}(G) \text{-orbits of regular} \\ & \text{embeddings } \Gamma \to \operatorname{Hol}(G) \} \\ &= \# \{ \operatorname{Aut}(G) \text{-orbits of regular subgroups in Hol}(G) \\ & \text{isomorphic to } \Gamma \}. \end{split}$$

Each of the groups $\operatorname{Aut}(\Gamma)$ and $\operatorname{Aut}(G)$ acts freely on the set of regular embeddings (so all orbits have the same size), but $\operatorname{Aut}(\Gamma) \times \operatorname{Aut}(G)$ does not act freely, and its orbits may have different sizes.

Thus there is no simple formula relating $e(\Gamma, G)$ and $b(\Gamma, G)$.

Nigel Byott (University of Exeter)

Squarefree HGS and Braces

Let *n* be squarefree. If *G* is a group of order *n*, then all Sylow subgroups of *G* are cyclic, so *G* is metabelian.

Let *n* be squarefree. If *G* is a group of order *n*, then all Sylow subgroups of *G* are cyclic, so *G* is metabelian. In fact

$$G \cong G(d, e, k) = \langle \sigma, \tau : \sigma^e = 1 = \tau^d, \tau \sigma \tau^{-1} = \tau^k \rangle,$$

where de = n and $ord_e(k) = d$.

Let *n* be squarefree. If *G* is a group of order *n*, then all Sylow subgroups of *G* are cyclic, so *G* is metabelian. In fact

$$G \cong G(d, e, k) = \langle \sigma, \tau : \sigma^e = 1 = \tau^d, \tau \sigma \tau^{-1} = \tau^k \rangle,$$

where de = n and $ord_e(k) = d$.

We have $G(d, e, k) \cong G(d', e', k')$ if and only if • d = d',

Let *n* be squarefree. If *G* is a group of order *n*, then all Sylow subgroups of *G* are cyclic, so *G* is metabelian. In fact

$$G \cong G(d, e, k) = \langle \sigma, \tau : \sigma^e = 1 = \tau^d, \tau \sigma \tau^{-1} = \tau^k \rangle,$$

where de = n and $ord_e(k) = d$.

We have $G(d, e, k) \cong G(d', e', k')$ if and only if

•
$$d = d'$$
,

Let *n* be squarefree. If *G* is a group of order *n*, then all Sylow subgroups of *G* are cyclic, so *G* is metabelian. In fact

$$G \cong G(d, e, k) = \langle \sigma, \tau : \sigma^e = 1 = \tau^d, \tau \sigma \tau^{-1} = \tau^k \rangle,$$

where de = n and $ord_e(k) = d$.

We have $G(d, e, k) \cong G(d', e', k')$ if and only if

•
$$d = d'$$

- *e* = *e*′, and
- k, k' generate the same cyclic subgroup of order d in \mathbb{Z}_e^{\times} .

Let *n* be squarefree. If *G* is a group of order *n*, then all Sylow subgroups of *G* are cyclic, so *G* is metabelian. In fact

$$G \cong G(d, e, k) = \langle \sigma, \tau : \sigma^e = 1 = \tau^d, \tau \sigma \tau^{-1} = \tau^k \rangle,$$

where de = n and $ord_e(k) = d$.

We have $G(d, e, k) \cong G(d', e', k')$ if and only if

•
$$d = d'$$

- e = e', and
- $k, \ k'$ generate the same cyclic subgroup of order d in $\mathbb{Z}_e^{\times}.$ Let

$$z = \gcd(e, k - 1), \qquad g = e/z.$$

Let *n* be squarefree. If *G* is a group of order *n*, then all Sylow subgroups of *G* are cyclic, so *G* is metabelian. In fact

$$G \cong G(d, e, k) = \langle \sigma, \tau : \sigma^e = 1 = \tau^d, \tau \sigma \tau^{-1} = \tau^k \rangle,$$

where de = n and $ord_e(k) = d$.

We have $G(d, e, k) \cong G(d', e', k')$ if and only if

•
$$d = d'$$

- e = e', and
- k, k' generate the same cyclic subgroup of order d in \mathbb{Z}_e^{\times} .

Let

$$z = \gcd(e, k - 1), \qquad g = e/z.$$

Then the centre of G is cyclic of order z, and the commutator subgroup of G is cyclic of order g.

```
• p \mid z, i.e. p is "central";
```

- *p* | *z*, i.e. *p* is "central";
- $p \mid g$, i.e. p is "acted on";

- *p* | *z*, i.e. *p* is "central";
- $p \mid g$, i.e. p is "acted on";
- $p \mid d$, i.e. p "acts".

- *p* | *z*, i.e. *p* is "central";
- $p \mid g$, i.e. p is "acted on";
- $p \mid d$, i.e. p "acts".

Finer invariants of G are $r_q = \operatorname{ord}_q(k)$ for each prime $q \mid e$.

The primes *p* dividing *n* are of 3 kinds:

- *p* | *z*, i.e. *p* is "central";
- $p \mid g$, i.e. p is "acted on";
- $p \mid d$, i.e. p "acts".

Finer invariants of G are $r_q = \operatorname{ord}_q(k)$ for each prime $q \mid e$. Then

$$r_q = 1 \Leftrightarrow q \mid z, \qquad r_q \mid \gcd(d, q-1), \qquad \operatorname{lcm}_{q \mid e} \{r_q\} = d.$$

The primes *p* dividing *n* are of 3 kinds:

- *p* | *z*, i.e. *p* is "central";
- *p* | *g*, i.e. *p* is "acted on";
- $p \mid d$, i.e. p "acts".

Finer invariants of G are $r_q = \operatorname{ord}_q(k)$ for each prime $q \mid e$. Then

$$r_q = 1 \Leftrightarrow q \mid z, \qquad r_q \mid \gcd(d, q-1), \qquad \lim_{q \mid e} \{r_q\} = d.$$

In general, d, g, z and the r_q do not determine G up to isomorphism.

The primes *p* dividing *n* are of 3 kinds:

- *p* | *z*, i.e. *p* is "central";
- *p* | *g*, i.e. *p* is "acted on";
- *p* | *d*, i.e. *p* "acts".

Finer invariants of G are $r_q = \operatorname{ord}_q(k)$ for each prime $q \mid e$. Then

$$r_q = 1 \Leftrightarrow q \mid z, \qquad r_q \mid \gcd(d, q-1), \qquad \lim_{q \mid e} \{r_q\} = d.$$

In general, d, g, z and the r_q do not determine G up to isomorphism.

Example

 $n = 2 \cdot 3 \cdot 7 \cdot 13, d = 6, e = 91.$

Here $G_1 \cong G_2$, but no two of G_2 , G_3 , G_4 , G_5 are isomorphic.

	k	<i>k</i> mod 7	k mod 13	k mod 13 r ₇		g	Ζ
<i>G</i> ₁	3	3	3	6	3	91	1
G ₂	61	5	9	6	3	91	1
G ₃	10	3	10	6	3	91	1
<i>G</i> ₄	51	2	12	3	2	91	1
<i>G</i> ₅	36	1	10	1	6	13	7

Nigel Byott (University of Exeter)

$$\theta(\sigma) = \sigma, \qquad \theta(\tau) = \sigma^{z}\tau,$$

and by ϕ_s for $s \in \mathbb{Z}_e^{\times}$, where

$$\phi_{s}(\sigma) = \sigma^{s}, \qquad \phi_{s}(\tau) = \tau,$$

$$\theta(\sigma) = \sigma, \qquad \theta(\tau) = \sigma^{z}\tau,$$

and by ϕ_s for $s \in \mathbb{Z}_e^{\times}$, where

$$\phi_{s}(\sigma) = \sigma^{s}, \qquad \phi_{s}(\tau) = \tau,$$

Thus

$$\operatorname{Aut}(G) \cong \mathbb{Z}_g \rtimes \mathbb{Z}_e^{\times}, \qquad |\operatorname{Aut}(G)| = g\varphi(e).$$

$$\theta(\sigma) = \sigma, \qquad \theta(\tau) = \sigma^{z}\tau,$$

and by ϕ_s for $s \in \mathbb{Z}_e^{\times}$, where

$$\phi_{s}(\sigma) = \sigma^{s}, \qquad \phi_{s}(\tau) = \tau,$$

Thus

$$\operatorname{Aut}(G) \cong \mathbb{Z}_g \rtimes \mathbb{Z}_e^{\times}, \qquad |\operatorname{Aut}(G)| = g\varphi(e).$$

Write elements of $Hol(G) = G \rtimes Aut(G)$ as $[x, \alpha]$ with $x \in G$ and $\alpha \in Aut(G)$. The multiplication in Hol(G), and the action of Hol(G) on G, are given by

$$[x\alpha][y,\beta] = [x\alpha(y),\alpha\beta], \qquad [x,\alpha] \cdot y = x\alpha(y).$$

$$\theta(\sigma) = \sigma, \qquad \theta(\tau) = \sigma^{z}\tau,$$

and by ϕ_s for $s \in \mathbb{Z}_e^{\times}$, where

$$\phi_{s}(\sigma) = \sigma^{s}, \qquad \phi_{s}(\tau) = \tau,$$

Thus

$$\operatorname{Aut}(G) \cong \mathbb{Z}_g \rtimes \mathbb{Z}_e^{\times}, \qquad |\operatorname{Aut}(G)| = g\varphi(e).$$

Write elements of $Hol(G) = G \rtimes Aut(G)$ as $[x, \alpha]$ with $x \in G$ and $\alpha \in Aut(G)$. The multiplication in Hol(G), and the action of Hol(G) on G, are given by

$$[x\alpha][y,\beta] = [x\alpha(y),\alpha\beta], \qquad [x,\alpha] \cdot y = x\alpha(y).$$

Any element of Hol(G) can be written $[\sigma^a \tau^b, \theta^c \phi_s]$ for suitable a, b, c, s.

Let n be squarefree, and consider two groups of order n:

$$G := G(d, e, k), \qquad \Gamma := G(\delta, \varepsilon, \kappa).$$

Let n be squarefree, and consider two groups of order n:

$$G := G(d, e, k), \qquad \Gamma := G(\delta, \varepsilon, \kappa).$$

Let $z = \gcd(e, k - 1)$, g = e/z and $\zeta = \gcd(\varepsilon, \kappa - 1)$, $\gamma = \varepsilon/\zeta$.

Let n be squarefree, and consider two groups of order n:

$$G := G(d, e, k), \qquad \Gamma := G(\delta, \varepsilon, \kappa).$$
Let $z = \gcd(e, k - 1), \ g = e/z$ and $\zeta = \gcd(\varepsilon, \kappa - 1), \ \gamma = \varepsilon/\zeta.$

Also, let

$$w = \varphi(\gcd(d, \delta)).$$

Let n be squarefree, and consider two groups of order n:

$$G := G(d, e, k), \qquad \Gamma := G(\delta, \varepsilon, \kappa).$$
Let $z = \gcd(e, k - 1), \ g = e/z$ and $\zeta = \gcd(\varepsilon, \kappa - 1), \ \gamma = \varepsilon/\zeta.$

Also, let

$$w = \varphi(\gcd(d, \delta)).$$

The result for skew braces is

Theorem 1 (Alabdali + B.)

$$b(\Gamma, G) = \begin{cases} 2^{\omega(g)}_{W} & \text{if } \gamma \mid e, \\ 0 & \text{if } \gamma \nmid e; \end{cases}$$

where $\omega(g)$ is the number of (distinct) primes dividing g.

Let n be squarefree, and consider two groups of order n:

$$G := G(d, e, k), \qquad \Gamma := G(\delta, \varepsilon, \kappa).$$
Let $z = \gcd(e, k - 1), \ g = e/z$ and $\zeta = \gcd(\varepsilon, \kappa - 1), \ \gamma = \varepsilon/\zeta.$

Also, let

$$w = \varphi(\gcd(d, \delta)).$$

The result for skew braces is

Theorem 1 (Alabdali + B.)

$$b(\Gamma, G) = \begin{cases} 2^{\omega(g)}w & \text{if } \gamma \mid e, \\ 0 & \text{if } \gamma \nmid e; \end{cases}$$

where $\omega(g)$ is the number of (distinct) primes dividing g.

The result for Hopf-Galois structures depends in a more complicated way on interplay of the structures of G and Γ .

Nigel Byott (University of Exeter)

Squarefree HGS and Braces

$$\mathcal{K} = \{\kappa^r : r \in \mathbb{Z}_{\delta}^{\times}\}$$

without changing the isomorphism type of Γ .

$$\mathcal{K} = \{\kappa^r : r \in \mathbb{Z}_{\delta}^{\times}\}$$

without changing the isomorphism type of Γ .

The group

$$\Delta := \{m \in \mathbb{Z}_{\delta}^{\times} : m \equiv 1 \pmod{\operatorname{gcd}(d, \delta)}\}$$

acts freely \mathcal{K} with $w = \varphi(\operatorname{gcd}(d, \delta))$ orbits.

$$\mathcal{K} = \{\kappa^r : r \in \mathbb{Z}_{\delta}^{\times}\}$$

without changing the isomorphism type of Γ .

The group

$$\Delta := \{m \in \mathbb{Z}_{\delta}^{\times} : m \equiv 1 \pmod{\operatorname{gcd}(d, \delta)}\}$$

acts freely \mathcal{K} with $w = \varphi(\operatorname{gcd}(d, \delta))$ orbits.

Let $\kappa_1, \ldots, \kappa_w$ be a system of orbit representatives.

$$\mathcal{K} = \{\kappa^r : r \in \mathbb{Z}_{\delta}^{\times}\}$$

without changing the isomorphism type of Γ .

The group

$$\Delta := \{m \in \mathbb{Z}_{\delta}^{\times} : m \equiv 1 \pmod{\operatorname{\mathsf{gcd}}(d, \delta)}\}$$

acts freely \mathcal{K} with $w = \varphi(\operatorname{gcd}(d, \delta))$ orbits.

Let $\kappa_1, \ldots, \kappa_w$ be a system of orbit representatives.

Recall $r_q = \operatorname{ord}_q(k)$ for primes $q \mid e$. Similarly, let $\rho_q = \operatorname{ord}_q(\kappa)$ for $q \mid \epsilon$.

$$\mathcal{K} = \{\kappa^r : r \in \mathbb{Z}_{\delta}^{\times}\}$$

without changing the isomorphism type of Γ .

The group

$$\Delta := \{m \in \mathbb{Z}^{ imes}_{\delta} : m \equiv 1 \pmod{\operatorname{gcd}(d, \delta)}\}$$

acts freely \mathcal{K} with $w = \varphi(\operatorname{gcd}(d, \delta))$ orbits.

Let $\kappa_1, \ldots, \kappa_w$ be a system of orbit representatives. Recall $r_q = \operatorname{ord}_q(k)$ for primes $q \mid e$. Similarly, let $\rho_q = \operatorname{ord}_q(\kappa)$ for $q \mid \epsilon$. Then let

$$S = \{ \text{primes } q \mid \text{gcd}(g, \gamma) : \rho_q = r_q > 2 \},$$

$$T = \{ \text{primes } q \mid \text{gcd}(g, \gamma) : \rho_q = r_q = 2 \}.$$

$$\mathcal{K} = \{\kappa^r : r \in \mathbb{Z}_{\delta}^{\times}\}$$

without changing the isomorphism type of Γ .

The group

$$\Delta := \{m \in \mathbb{Z}_{\delta}^{ imes} : m \equiv 1 \pmod{\operatorname{\mathsf{gcd}}(d, \delta)}\}$$

acts freely \mathcal{K} with $w = \varphi(\operatorname{gcd}(d, \delta))$ orbits.

Let $\kappa_1, \ldots, \kappa_w$ be a system of orbit representatives. Recall $r_q = \operatorname{ord}_q(k)$ for primes $q \mid e$. Similarly, let $\rho_q = \operatorname{ord}_q(\kappa)$ for $q \mid \epsilon$. Then let

$$S = \{ \text{primes } q \mid \text{gcd}(g, \gamma) : \rho_q = r_q > 2 \}, \\ T = \{ \text{primes } q \mid \text{gcd}(g, \gamma) : \rho_q = r_q = 2 \}.$$

For $1 \leq h \leq w$, let

$$S_h^+ = \{q \in S : k \equiv \kappa_h \pmod{q}\},$$

$$S_h^- = \{q \in S : k \equiv \kappa_h^{-1} \pmod{q}\},$$

$$S_h = S_h^+ \cup S_h^-.$$

Theorem 2 (Alabdali + B.)

$$e(\Gamma, G) = \begin{cases} \frac{2^{\omega(g)}\varphi(d)\gamma}{w} \left(\prod_{q \in T} \frac{1}{q}\right) \sum_{h=1}^{w} \prod_{q \in S_h} \frac{q+1}{q} & \text{if } \gamma \mid e, \\ 0 & \text{if } \gamma \nmid e. \end{cases}$$

Theorem 2 (Alabdali + B.)

$$e(\Gamma, G) = \begin{cases} \frac{2^{\omega(g)}\varphi(d)\gamma}{w} \left(\prod_{q \in T} \frac{1}{q}\right) \sum_{h=1}^{w} \prod_{q \in S_h} \frac{q+1}{q} & \text{if } \gamma \mid e, \\ 0 & \text{if } \gamma \nmid e. \end{cases}$$

Remark

Although Theorem 1 is simpler to state than Theorem 2, I do not know how to prove Theorem 1 without proving Theorem 2 first.

$$\operatorname{Hol}(G) = G \rtimes \operatorname{Aut}(G) = \{ [\sigma^{a} \tau^{b}, \theta^{c} \phi_{s}] \}.$$

$$\operatorname{Hol}(G) = G \rtimes \operatorname{Aut}(G) = \{ [\sigma^{a} \tau^{b}, \theta^{c} \phi_{s}] \}.$$

Inside Hol(G), we need to find all regular subgroups isomorphic to Γ .

$$\operatorname{Hol}(G) = G \rtimes \operatorname{Aut}(G) = \{ [\sigma^{a} \tau^{b}, \theta^{c} \phi_{s}] \}.$$

Inside Hol(G), we need to find all regular subgroups isomorphic to Γ . We choose an alternative presentation for Γ :

$$\Gamma = G(\delta, \epsilon, \kappa) = \langle X, Y : X^{\gamma} = 1 = Y^{\zeta \delta}, YXY^{-1} = X^{\kappa} \rangle.$$

$$\operatorname{Hol}(G) = G \rtimes \operatorname{Aut}(G) = \{ [\sigma^{a} \tau^{b}, \theta^{c} \phi_{s}] \}.$$

Inside Hol(G), we need to find all regular subgroups isomorphic to Γ . We choose an alternative presentation for Γ :

$$\Gamma = \mathcal{G}(\delta, \epsilon, \kappa) = \langle X, Y : X^{\gamma} = 1 = Y^{\zeta \delta}, YXY^{-1} = X^{\kappa} \rangle.$$

We look for elements X, $Y \in Hol(G)$ satisfying these relations.

$$\operatorname{Hol}(G) = G \rtimes \operatorname{Aut}(G) = \{ [\sigma^{a} \tau^{b}, \theta^{c} \phi_{s}] \}.$$

Inside Hol(G), we need to find all regular subgroups isomorphic to Γ . We choose an alternative presentation for Γ :

$$\Gamma = \mathcal{G}(\delta, \epsilon, \kappa) = \langle X, Y : X^{\gamma} = 1 = Y^{\zeta \delta}, YXY^{-1} = X^{\kappa} \rangle.$$

We look for elements X, $Y \in Hol(G)$ satisfying these relations.

As X is in the commutator subgroup of Γ , and so of Hol(G), it cannot involve τ . It follows that $\gamma \mid e$ if any such subgroups exist.

$$\operatorname{Hol}(G) = G \rtimes \operatorname{Aut}(G) = \{ [\sigma^{a} \tau^{b}, \theta^{c} \phi_{s}] \}.$$

Inside Hol(G), we need to find all regular subgroups isomorphic to Γ . We choose an alternative presentation for Γ :

$$\Gamma = \mathcal{G}(\delta, \epsilon, \kappa) = \langle X, Y : X^{\gamma} = 1 = Y^{\zeta \delta}, YXY^{-1} = X^{\kappa} \rangle.$$

We look for elements X, $Y \in Hol(G)$ satisfying these relations.

As X is in the commutator subgroup of Γ , and so of $\operatorname{Hol}(G)$, it cannot involve τ . It follows that $\gamma \mid e$ if any such subgroups exist.

Also, X contains no ϕ_s factor: $X = [\sigma^a, \theta^c]$.

$$\operatorname{Hol}(G) = G \rtimes \operatorname{Aut}(G) = \{ [\sigma^{a} \tau^{b}, \theta^{c} \phi_{s}] \}.$$

Inside Hol(G), we need to find all regular subgroups isomorphic to Γ . We choose an alternative presentation for Γ :

$$\Gamma = \mathcal{G}(\delta, \epsilon, \kappa) = \langle X, Y : X^{\gamma} = 1 = Y^{\zeta \delta}, YXY^{-1} = X^{\kappa} \rangle.$$

We look for elements X, $Y \in Hol(G)$ satisfying these relations.

As X is in the commutator subgroup of Γ , and so of Hol(G), it cannot involve τ . It follows that $\gamma \mid e$ if any such subgroups exist.

Also, X contains no ϕ_s factor: $X = [\sigma^a, \theta^c]$.

We can choose Y of the form $[\sigma^u \tau, \theta^v \phi_t]$ (where τ has exponent 1), at the expense of replacing κ by some κ^r .

$$\operatorname{Hol}(G) = G \rtimes \operatorname{Aut}(G) = \{ [\sigma^{a} \tau^{b}, \theta^{c} \phi_{s}] \}.$$

Inside Hol(G), we need to find all regular subgroups isomorphic to Γ . We choose an alternative presentation for Γ :

$$\Gamma = \mathcal{G}(\delta, \epsilon, \kappa) = \langle X, Y : X^{\gamma} = 1 = Y^{\zeta \delta}, YXY^{-1'} = X^{\kappa} \rangle.$$

We look for elements X, $Y \in Hol(G)$ satisfying these relations.

As X is in the commutator subgroup of Γ , and so of $\operatorname{Hol}(G)$, it cannot involve τ . It follows that $\gamma \mid e$ if any such subgroups exist.

Also, X contains no ϕ_s factor: $X = [\sigma^a, \theta^c]$.

We can choose Y of the form $[\sigma^u \tau, \theta^v \phi_t]$ (where τ has exponent 1), at the expense of replacing κ by some κ^r .

In fact, we can choose Y so $YXY^{-1} = X^{\kappa_h}$ for exactly one $h \in \{1, \ldots, w\}$, so the regular subgroups fall into w families \mathcal{F}_h . Nigel Byott (University of Exeter) Squarefree HGS and Braces 19 June

$$X = [\sigma^a, \theta^c], \quad Y = [\sigma^u \tau, \theta^v \phi_t], \qquad Y X Y^{-1} = X^{\kappa_h}.$$

$$X = [\sigma^a, \theta^c], \quad Y = [\sigma^u \tau, \theta^v \phi_t], \qquad Y X Y^{-1} = X^{\kappa_h}.$$

Let \mathcal{N}_h be the set of quintuples

$$(t, a, c, u, v) \in \mathbb{Z}_e^{\times} \times \mathbb{Z}_e \times \mathbb{Z}_g \times \mathbb{Z}_e \times \mathbb{Z}_g$$

for which the corresponding X, $Y \in Hol(G)$ generate a regular subgroup of Hol(G) in \mathcal{F}_h .

$$X = [\sigma^a, \theta^c], \quad Y = [\sigma^u \tau, \theta^v \phi_t], \qquad Y X Y^{-1} = X^{\kappa_h}.$$

Let \mathcal{N}_h be the set of quintuples

$$(t, a, c, u, v) \in \mathbb{Z}_e^{\times} \times \mathbb{Z}_e \times \mathbb{Z}_g \times \mathbb{Z}_e \times \mathbb{Z}_g$$

for which the corresponding X, $Y \in Hol(G)$ generate a regular subgroup of Hol(G) in \mathcal{F}_h .

Then

$$e(\Gamma, G) = \frac{|\operatorname{Aut}(G)|}{|\operatorname{Aut}(\Gamma)|} \sum_{h=1}^{w} |\mathcal{N}_{h}| \times \frac{\varphi(\delta)}{\gamma \varphi(e) w}.$$

$$X = [\sigma^a, \theta^c], \quad Y = [\sigma^u \tau, \theta^v \phi_t], \qquad Y X Y^{-1} = X^{\kappa_h}.$$

Let \mathcal{N}_h be the set of quintuples

$$(t, a, c, u, v) \in \mathbb{Z}_e^{\times} \times \mathbb{Z}_e \times \mathbb{Z}_g \times \mathbb{Z}_e \times \mathbb{Z}_g$$

for which the corresponding X, $Y \in Hol(G)$ generate a regular subgroup of Hol(G) in \mathcal{F}_h .

Then

$$e(\Gamma, G) = \frac{|\operatorname{Aut}(G)|}{|\operatorname{Aut}(\Gamma)|} \sum_{h=1}^{w} |\mathcal{N}_{h}| \times \frac{\varphi(\delta)}{\gamma \varphi(e) w}.$$

We need to calculate $|\mathcal{N}_h|$.

$$X = [\sigma^a, \theta^c], \quad Y = [\sigma^u \tau, \theta^v \phi_t], \qquad Y X Y^{-1} = X^{\kappa_h}.$$

Let \mathcal{N}_h be the set of quintuples

$$(t, a, c, u, v) \in \mathbb{Z}_e^{\times} \times \mathbb{Z}_e \times \mathbb{Z}_g \times \mathbb{Z}_e \times \mathbb{Z}_g$$

for which the corresponding X, $Y \in Hol(G)$ generate a regular subgroup of Hol(G) in \mathcal{F}_h .

Then

$$e(\Gamma, G) = \frac{|\operatorname{Aut}(G)|}{|\operatorname{Aut}(\Gamma)|} \sum_{h=1}^{w} |\mathcal{N}_{h}| \times \frac{\varphi(\delta)}{\gamma \varphi(e) w}.$$

We need to calculate $|\mathcal{N}_h|$.

Let

$$\lambda = z^{-1}(k-1) \in \mathbb{Z}_g^{\times}, \qquad \mu = k^{-1}\lambda \in \mathbb{Z}_g^{ imes}.$$

Then $(t, a, c, u, v) \in \mathcal{N}_h$ if and only if, for each prime $q \mid e$, the following congruences mod q are satisfied.

Then $(t, a, c, u, v) \in \mathcal{N}_h$ if and only if, for each prime $q \mid e$, the following congruences mod q are satisfied.

Primes q	t	а	и	С	V	Number
$q \mid gcd(z,\gamma)$	κ_h	\neq 0	arb.			q(q-1)
$q \mid \operatorname{gcd}(z,\zeta\delta)$	1	0	≢ 0			q-1
$q \mid \gcd(g, \gamma),$	κ_h	≢ 0	arb.	λa	arb.	$2q^2(q-1)$
$q ot\in S_h \cup T$	$\kappa_h k^{-1}$	\neq 0	arb.	0	arb.	
$q\in S_h^+$	κ_h	\neq 0	arb.	λa	arb.	$q(q^2-1)$
	$\kappa_h k^{-1} \equiv 1$	eq 0	arb.	0	0	
$q \in S_h^-$	κ_h	≢ 0	arb.	λa	μu	$q(q^2 - 1)$
	$\kappa_h k^{-1} \equiv \kappa^2$	\neq 0	arb.	0	arb.	
$q \in T$	$\kappa_h \equiv -1$	≢ 0	arb.	λa	μ u	2q(q-1)
	$\kappa_h k^{-1} \equiv 1$	≢ 0	arb.	0	0	
$q \mid \gcd(g, \zeta \delta)$	1	0	arb.	0	≢ 0	2q(q-1)
	k^{-1}	0	arb.	0	$\neq \mu u$	

Then $(t, a, c, u, v) \in \mathcal{N}_h$ if and only if, for each prime $q \mid e$, the following congruences mod q are satisfied.

Primes q	t	а	и	С	V	Number
$q \mid gcd(z,\gamma)$	κ_h	≢ 0	arb.			q(q-1)
$q \mid \gcd(z, \zeta \delta)$	1	0	≢ 0			q-1
$q \mid gcd(g,\gamma),$	κ_h	≢ 0	arb.	λa	arb.	$2q^2(q-1)$
$q ot\in S_h \cup T$	$\kappa_h k^{-1}$	≢ 0	arb.	0	arb.	
$q\in S_h^+$	κ_h	≢ 0	arb.	λa	arb.	$q(q^2-1)$
	$\kappa_h k^{-1} \equiv 1$	≢ 0	arb.	0	0	
$q \in S_h^-$	κ_h	≢ 0	arb.	λa	μ u	$q(q^2 - 1)$
	$\kappa_h k^{-1} \equiv \kappa^2$	≢ 0	arb.	0	arb.	
$q \in T$	$\kappa_h \equiv -1$	≢ 0	arb.	λa	μ u	2q(q-1)
	$\kappa_h k^{-1} \equiv 1$	≢ 0	arb.	0	0	
$q \mid \gcd(g, \zeta \delta)$	1	0	arb.	0	≢ 0	2q(q-1)
	k^{-1}	0	arb.	0	$\not\equiv \mu \mathbf{u}$	

Multiplying the contributions for each q, we can find $|\mathcal{N}_q|$ and hence complete the proof of Theorem 2.

Nigel Byott (University of Exeter)

Squarefree HGS and Braces

Thus, for each $(t, a, c, u, v) \in \mathcal{N}_h$, we must weight the corresponding regular subgroup by 1/I(t, a, c, uv), where I(t, a, c, u, v) is the index in Aut(G) of the stabiliser of the subgroup.

Thus, for each $(t, a, c, u, v) \in \mathcal{N}_h$, we must weight the corresponding regular subgroup by 1/I(t, a, c, uv), where I(t, a, c, u, v) is the index in Aut(G) of the stabiliser of the subgroup.

$$b(\Gamma, G) = \frac{\varphi(\delta)}{\gamma \varphi(e) w} \sum_{h=1}^{w} \sum_{(t,a,c,u,v) \in \mathcal{N}_h} \frac{1}{I(t, a, c, u, v)}$$

.

Thus, for each $(t, a, c, u, v) \in \mathcal{N}_h$, we must weight the corresponding regular subgroup by 1/I(t, a, c, uv), where I(t, a, c, u, v) is the index in Aut(G) of the stabiliser of the subgroup.

$$b(\Gamma, G) = \frac{\varphi(\delta)}{\gamma \varphi(e) w} \sum_{h=1}^{w} \sum_{(t,a,c,u,v) \in \mathcal{N}_h} \frac{1}{I(t, a, c, u, v)}$$

I(t, a, c, u, v) is a product of contributions I_q for each prime $q \mid e$, but we need to partition these primes more finely than before.

Primes q	t	а	и	С	V	Index	Number
$q\mid gcd(g,\delta)$	1	0	arb.	0	≢ 0	q(q-1)	2q(q-1)
	k^{-1}	0	arb.	0	$\neq \mu u$		
$q\mid gcd(z,\delta)$	1	0	\neq 0			q-1	q-1
$q\mid gcd(g,\gamma)$	κ_h	≢ 0	arb.	λa	arb.	q	$2q^2(q-1)$
$q ot\in S_h \cup T$	$\kappa_h k^{-1}$	≢ 0	arb.	0	arb.		
$q\in S_{h}^{+}$, $t\equiv \kappa_{h}$	κ_h	≢ 0	arb.	λa	arb.	q	$q^{2}(q-1)$
$q\in S_{h}^{+}$, $t\equiv 1$	1	≢ 0	arb.	0	0	1	q(q-1)
$q\in S_h^-$, $t\equiv \kappa_h$	κ_h	≢ 0	arb.	λa	μ u	1	q(q-1)
$q\in S_h^-$, $t\equiv \kappa_h k^{-1}$	$\kappa_h k^{-1}$	≢ 0	arb.	0	arb.	q	$q^{2}(q-1)$
$q\in T$	1	≢ 0	arb.	0	0	1	2q(q-1)
	-1	≢ 0	arb.	λa	μ a		
$q \mid gcd(z,\gamma)$	κ_h	≢ 0	arb.			1	q(q-1)
$q \mid gcd(g,\zeta)$	1	0	arb.	0	≢ 0	q	2q(q-1)
	k^{-1}	0	arb.	0	$\not\equiv \mu u$		
$q \mid (z, \zeta)$	1	0	\neq 0			1	q-1

Similarly for S_h^- .

Similarly for S_h^- .

Take arbitrary subsets $A \subseteq S_h^+$, $B \subseteq S_h^-$, and let $N_h(A, B)$ be the number of quintuples in \mathcal{N}_h with

 $\{q \in S_h^+ : t \equiv 1 \pmod{q}\} = A; \qquad \{q \in S_h^- : t \equiv \kappa_h \pmod{q}\} = B.$

Similarly for S_h^- .

Take arbitrary subsets $A \subseteq S_h^+$, $B \subseteq S_h^-$, and let $N_h(A, B)$ be the number of quintuples in \mathcal{N}_h with

 $\{q \in S_h^+ : t \equiv 1 \pmod{q}\} = A; \qquad \{q \in S_h^- : t \equiv \kappa_h \pmod{q}\} = B.$

Let $I_h(A, B)$ be the index of the stabiliser of each of these subgroups. Then

$$b(\Gamma, G) = \frac{\varphi(\delta)}{\gamma \varphi(e) w} \sum_{h=1}^{w} \sum_{A,B} \frac{N_h(A, B)}{I_h(A, B)}.$$

Similarly for S_h^- .

Take arbitrary subsets $A \subseteq S_h^+$, $B \subseteq S_h^-$, and let $N_h(A, B)$ be the number of quintuples in \mathcal{N}_h with

 $\{q \in S_h^+ : t \equiv 1 \pmod{q}\} = A; \qquad \{q \in S_h^- : t \equiv \kappa_h \pmod{q}\} = B.$

Let $I_h(A, B)$ be the index of the stabiliser of each of these subgroups. Then

$$b(\Gamma, G) = \frac{\varphi(\delta)}{\gamma \varphi(e) w} \sum_{h=1}^{w} \sum_{A,B} \frac{N_h(A, B)}{I_h(A, B)}.$$

The contribution of q to $N_h(A, B)/I_h(A, B)$ is q(q-1) for all $q \in S_h^+ \cup S_h^-$ and is 2q(q-1) for all other $q \mid \text{gcd}(g, \gamma)$.

Similarly for S_h^- .

Take arbitrary subsets $A \subseteq S_h^+$, $B \subseteq S_h^-$, and let $N_h(A, B)$ be the number of quintuples in \mathcal{N}_h with

 $\{q \in S_h^+ : t \equiv 1 \pmod{q}\} = A; \qquad \{q \in S_h^- : t \equiv \kappa_h \pmod{q}\} = B.$

Let $I_h(A, B)$ be the index of the stabiliser of each of these subgroups. Then

$$b(\Gamma, G) = \frac{\varphi(\delta)}{\gamma \varphi(e) w} \sum_{h=1}^{w} \sum_{A,B} \frac{N_h(A, B)}{I_h(A, B)}.$$

The contribution of q to $N_h(A, B)/I_h(A, B)$ is q(q-1) for all $q \in S_h^+ \cup S_h^-$ and is 2q(q-1) for all other $q \mid \text{gcd}(g, \gamma)$.

Summing over A and B restores the "missing" factor 2 so all primes $q \mid gcd(g, \gamma)$ give the same contribution.

Multiplying the contributions for all $q \mid e$, and simplifying, we obtain the simple formula

$$b(\Gamma,G) = egin{cases} 2^{\omega(g)} w & ext{if } \gamma \mid e, \ 0 & ext{if } \gamma
mid e; \end{cases}$$

proving Theorem 1.

Thank you for listening!