Hopf-Galois Structures on Galois Extensions of Squarefree Degree, and Skew Braces of Squarefree Order

Nigel Byott
University of Exeter

19 June 2019

Outline

Outline

(1) Counting Hopf-Galois Structures

Outline

(1) Counting Hopf-Galois Structures
(2) Counting Skew Braces

Outline

(1) Counting Hopf-Galois Structures
(2) Counting Skew Braces
(3) Groups of Squarefree Order

Outline

(1) Counting Hopf-Galois Structures
(2) Counting Skew Braces
(3) Groups of Squarefree Order
(9) Hopf-Galois Structures and Skew Braces of Squarefree Order (Joint with Ali Alabdali, University of Mosul, Iraq)

I. Counting Hopf-Galois Structures

I. Counting Hopf-Galois Structures

Definition

Let L / K be a finite extension of fields. A Hopf-Galois structure on L / K consists of a K-Hopf algebra H acting on L and making it into an H-Galois extension of K in the sense of Chase and Sweedler (1969),

I. Counting Hopf-Galois Structures

Definition

Let L / K be a finite extension of fields. A Hopf-Galois structure on L / K consists of a K-Hopf algebra H acting on L and making it into an H-Galois extension of K in the sense of Chase and Sweedler (1969), i.e.
(i) $h \cdot(s t)=\sum_{(h)}\left(h_{(1)} \cdot s\right)\left(h_{(2)} \cdot t\right)$ for all $h \in H$ and $s, t \in L$, where we write the comultiplication on H as $h \mapsto \sum_{(h)} h_{(1)} \otimes h_{(2)}$;

I. Counting Hopf-Galois Structures

Definition

Let L / K be a finite extension of fields. A Hopf-Galois structure on L / K consists of a K-Hopf algebra H acting on L and making it into an H-Galois extension of K in the sense of Chase and Sweedler (1969), i.e.
(i) $h \cdot(s t)=\sum_{(h)}\left(h_{(1)} \cdot s\right)\left(h_{(2)} \cdot t\right)$ for all $h \in H$ and $s, t \in L$, where we write the comultiplication on H as $h \mapsto \sum_{(h)} h_{(1)} \otimes h_{(2)}$;
(ii) $h \cdot 1=\varepsilon(h) 1$ for all $h \in H$, where $\varepsilon: H \rightarrow K$ is the counit of H;

I. Counting Hopf-Galois Structures

Definition

Let L / K be a finite extension of fields. A Hopf-Galois structure on L / K consists of a K-Hopf algebra H acting on L and making it into an H-Galois extension of K in the sense of Chase and Sweedler (1969), i.e.
(i) $h \cdot(s t)=\sum_{(h)}\left(h_{(1)} \cdot s\right)\left(h_{(2)} \cdot t\right)$ for all $h \in H$ and $s, t \in L$, where we write the comultiplication on H as $h \mapsto \sum_{(h)} h_{(1)} \otimes h_{(2)}$;
(ii) $h \cdot 1=\varepsilon(h) 1$ for all $h \in H$, where $\varepsilon: H \rightarrow K$ is the counit of H;
(iii) the K-linear map $\theta: A \otimes_{K} H \rightarrow \operatorname{End}_{K}(A)$, given by $\theta(a \otimes h)(b)=a(h \cdot b)$, is bijective.

I. Counting Hopf-Galois Structures

Definition

Let L / K be a finite extension of fields. A Hopf-Galois structure on L / K consists of a K-Hopf algebra H acting on L and making it into an H-Galois extension of K in the sense of Chase and Sweedler (1969), i.e.
(i) $h \cdot(s t)=\sum_{(h)}\left(h_{(1)} \cdot s\right)\left(h_{(2)} \cdot t\right)$ for all $h \in H$ and $s, t \in L$, where we write the comultiplication on H as $h \mapsto \sum_{(h)} h_{(1)} \otimes h_{(2)}$;
(ii) $h \cdot 1=\varepsilon(h) 1$ for all $h \in H$, where $\varepsilon: H \rightarrow K$ is the counit of H;
(iii) the K-linear map $\theta: A \otimes_{K} H \rightarrow \operatorname{End}_{K}(A)$, given by $\theta(a \otimes h)(b)=a(h \cdot b)$, is bijective.

Example

If L / K is a Galois extension and $\Gamma=\operatorname{Gal}(L / K)$, then the group algebra $H=K[\Gamma]$, with its natural action on L. gives a Hopf-Galois structure on L/K. This is the classical Hopf-Galois structure.

Hopf-Galois extensions were introduced to study inseparable field extensions, and they arise in algebraic geometry as the algebras representing principal homogenous spaces over a finite group scheme.

Hopf-Galois extensions were introduced to study inseparable field extensions, and they arise in algebraic geometry as the algebras representing principal homogenous spaces over a finite group scheme.

We will be concerned with extensions L / K which are already Galois extensions.

Hopf-Galois extensions were introduced to study inseparable field extensions, and they arise in algebraic geometry as the algebras representing principal homogenous spaces over a finite group scheme.

We will be concerned with extensions L / K which are already Galois extensions.
In that case, we have

Theorem (Greither \& Pareigis, 1987)

Let L / K be a Galois extension of fields, and let $\Gamma=\operatorname{Gal}(L / K)$. Then the Hopf-Galois structures on L/K correspond bijectively to regular subgroups G of Perm (Γ) which are normalised by the group $\lambda(\Gamma)$ of left translations by Γ.

Hopf-Galois extensions were introduced to study inseparable field extensions, and they arise in algebraic geometry as the algebras representing principal homogenous spaces over a finite group scheme.

We will be concerned with extensions L / K which are already Galois extensions.
In that case, we have

Theorem (Greither \& Pareigis, 1987)

Let L / K be a Galois extension of fields, and let $\Gamma=\operatorname{Gal}(L / K)$. Then the Hopf-Galois structures on L/K correspond bijectively to regular subgroups G of $\operatorname{Perm}(\Gamma)$ which are normalised by the group $\lambda(\Gamma)$ of left translations by Γ.

We say $G \subset \operatorname{Perm}(\Gamma)$ is regular if any two (and hence all three) of the following hold:

Hopf-Galois extensions were introduced to study inseparable field extensions, and they arise in algebraic geometry as the algebras representing principal homogenous spaces over a finite group scheme.

We will be concerned with extensions L / K which are already Galois extensions.
In that case, we have

Theorem (Greither \& Pareigis, 1987)

Let L / K be a Galois extension of fields, and let $\Gamma=\operatorname{Gal}(L / K)$. Then the Hopf-Galois structures on L/K correspond bijectively to regular subgroups G of Perm (Γ) which are normalised by the group $\lambda(\Gamma)$ of left translations by Γ.

We say $G \subset \operatorname{Perm}(\Gamma)$ is regular if any two (and hence all three) of the following hold:

- G acts transitively on Γ;

Hopf-Galois extensions were introduced to study inseparable field extensions, and they arise in algebraic geometry as the algebras representing principal homogenous spaces over a finite group scheme.

We will be concerned with extensions L / K which are already Galois extensions.
In that case, we have

Theorem (Greither \& Pareigis, 1987)

Let L / K be a Galois extension of fields, and let $\Gamma=\operatorname{Gal}(L / K)$. Then the Hopf-Galois structures on L/K correspond bijectively to regular subgroups G of $\operatorname{Perm}(\Gamma)$ which are normalised by the group $\lambda(\Gamma)$ of left translations by Γ.

We say $G \subset \operatorname{Perm}(\Gamma)$ is regular if any two (and hence all three) of the following hold:

- G acts transitively on Γ;
- the stabiliser of some (any) element of Γ is $\left\{e_{G}\right\}$;

Hopf-Galois extensions were introduced to study inseparable field extensions, and they arise in algebraic geometry as the algebras representing principal homogenous spaces over a finite group scheme.

We will be concerned with extensions L / K which are already Galois extensions.
In that case, we have

Theorem (Greither \& Pareigis, 1987)

Let L / K be a Galois extension of fields, and let $\Gamma=\operatorname{Gal}(L / K)$. Then the Hopf-Galois structures on L/K correspond bijectively to regular subgroups G of Perm (Γ) which are normalised by the group $\lambda(\Gamma)$ of left translations by Γ.

We say $G \subset \operatorname{Perm}(\Gamma)$ is regular if any two (and hence all three) of the following hold:

- G acts transitively on Γ;
- the stabiliser of some (any) element of Γ is $\left\{e_{G}\right\}$;
- $|G|=|\Gamma|$.

The Hopf algebra corresponding to G is $H=L[G]^{\Gamma}$, the fixed points under Γ acting both on L (as field automorphisms) and on G (as conjugation by left translations).

The Hopf algebra corresponding to G is $H=L[G]^{\Gamma}$, the fixed points under Γ acting both on L (as field automorphisms) and on G (as conjugation by left translations).

The type of the Hopf-Galois structure is the isomorphism class of G.

The Hopf algebra corresponding to G is $H=L[G]^{\Gamma}$, the fixed points under Γ acting both on L (as field automorphisms) and on G (as conjugation by left translations).

The type of the Hopf-Galois structure is the isomorphism class of G.

Example

If $\Gamma \cong C_{2} \times C_{2}$ then L / K has one Hopf-Galois structure of type $C_{2} \times C_{2}$ (the classical one) and 3 of type C_{4}.

The Hopf algebra corresponding to G is $H=L[G]^{\Gamma}$, the fixed points under Γ acting both on L (as field automorphisms) and on G (as conjugation by left translations).

The type of the Hopf-Galois structure is the isomorphism class of G.

Example

If $\Gamma \cong C_{2} \times C_{2}$ then L / K has one Hopf-Galois structure of type $C_{2} \times C_{2}$ (the classical one) and 3 of type C_{4}.

Changing notation, we start with (abstract) finite groups Γ, G.

The Hopf algebra corresponding to G is $H=L[G]^{\Gamma}$, the fixed points under Γ acting both on L (as field automorphisms) and on G (as conjugation by left translations).

The type of the Hopf-Galois structure is the isomorphism class of G.

Example

If $\Gamma \cong C_{2} \times C_{2}$ then L / K has one Hopf-Galois structure of type $C_{2} \times C_{2}$ (the classical one) and 3 of type C_{4}.

Changing notation, we start with (abstract) finite groups Γ, G.

Definition

$e(\Gamma, G)$ is the number of Hopf-Galois structures of type G on a Galois extension with Galois group $\cong \Gamma$.

The Hopf algebra corresponding to G is $H=L[G]^{\Gamma}$, the fixed points under Γ acting both on L (as field automorphisms) and on G (as conjugation by left translations).

The type of the Hopf-Galois structure is the isomorphism class of G.

Example

 If $\Gamma \cong C_{2} \times C_{2}$ then L / K has one Hopf-Galois structure of type $C_{2} \times C_{2}$ (the classical one) and 3 of type C_{4}.Changing notation, we start with (abstract) finite groups Γ, G.

Definition

$e(\Gamma, G)$ is the number of Hopf-Galois structures of type G on a Galois extension with Galois group $\cong \Gamma$.

So $e(\Gamma, G)$ is just the number of regular subgroups in Perm (Γ) which are isomorphic to G and normalised by $\lambda(\Gamma)$.

We can avoid calculating in the large group Perm (Γ) by looking at regular embeddings instead of regular subgroups.

We can avoid calculating in the large group Perm(Г) by looking at regular embeddings instead of regular subgroups.

A regular embedding $\alpha: G \hookrightarrow \operatorname{Perm}(\Gamma)$ gives rise to a bijection

$$
\hat{\alpha}: G \rightarrow \Gamma, \quad \hat{\alpha}(g)=\alpha(g) \cdot e_{\Gamma}
$$

and hence an isomorphism $\operatorname{Perm}(\Gamma) \rightarrow \operatorname{Perm}(G)$.

We can avoid calculating in the large group Perm(Г) by looking at regular embeddings instead of regular subgroups.

A regular embedding $\alpha: G \hookrightarrow \operatorname{Perm}(\Gamma)$ gives rise to a bijection

$$
\hat{\alpha}: G \rightarrow \Gamma, \quad \hat{\alpha}(g)=\alpha(g) \cdot e_{\Gamma}
$$

and hence an isomorphism $\operatorname{Perm}(\Gamma) \rightarrow \operatorname{Perm}(G)$. Then the inclusion $\lambda(\Gamma) \rightarrow \operatorname{Perm}(\Gamma)$ translates to a regular embedding $\beta: \Gamma \rightarrow \operatorname{Perm}(G)$.

We can avoid calculating in the large group Perm(Г) by looking at regular embeddings instead of regular subgroups.

A regular embedding $\alpha: G \hookrightarrow \operatorname{Perm}(\Gamma)$ gives rise to a bijection

$$
\hat{\alpha}: G \rightarrow \Gamma, \quad \hat{\alpha}(g)=\alpha(g) \cdot e_{\Gamma}
$$

and hence an isomorphism $\operatorname{Perm}(\Gamma) \rightarrow \operatorname{Perm}(G)$. Then the inclusion $\lambda(\Gamma) \rightarrow \operatorname{Perm}(\Gamma)$ translates to a regular embedding $\beta: \Gamma \rightarrow \operatorname{Perm}(G)$.

We can reverse this process, so we get a bijection between regular embeddings $\alpha: G \hookrightarrow \operatorname{Perm}(\Gamma)$ and regular embeddings $\beta: \Gamma \rightarrow \operatorname{Perm}(G)$.

We can avoid calculating in the large group Perm(Г) by looking at regular embeddings instead of regular subgroups.

A regular embedding $\alpha: G \hookrightarrow \operatorname{Perm}(\Gamma)$ gives rise to a bijection

$$
\hat{\alpha}: G \rightarrow \Gamma, \quad \hat{\alpha}(g)=\alpha(g) \cdot e_{\Gamma}
$$

and hence an isomorphism $\operatorname{Perm}(\Gamma) \rightarrow \operatorname{Perm}(G)$. Then the inclusion $\lambda(\Gamma) \rightarrow \operatorname{Perm}(\Gamma)$ translates to a regular embedding $\beta: \Gamma \rightarrow \operatorname{Perm}(G)$.

We can reverse this process, so we get a bijection between regular embeddings $\alpha: G \hookrightarrow \operatorname{Perm}(\Gamma)$ and regular embeddings $\beta: \Gamma \rightarrow \operatorname{Perm}(G)$.
$\alpha(G)$ is normalised by $\lambda(\Gamma) \Leftrightarrow \lambda(\Gamma) \subset \operatorname{Norm}_{\text {Perm(}}(\Gamma)(\alpha(G))$

We can avoid calculating in the large group Perm(Г) by looking at regular embeddings instead of regular subgroups.

A regular embedding $\alpha: G \hookrightarrow \operatorname{Perm}(\Gamma)$ gives rise to a bijection

$$
\hat{\alpha}: G \rightarrow \Gamma, \quad \hat{\alpha}(g)=\alpha(g) \cdot e_{\Gamma}
$$

and hence an isomorphism $\operatorname{Perm}(\Gamma) \rightarrow \operatorname{Perm}(G)$. Then the inclusion $\lambda(\Gamma) \rightarrow \operatorname{Perm}(\Gamma)$ translates to a regular embedding $\beta: \Gamma \rightarrow \operatorname{Perm}(G)$.

We can reverse this process, so we get a bijection between regular embeddings $\alpha: G \hookrightarrow \operatorname{Perm}(\Gamma)$ and regular embeddings $\beta: \Gamma \rightarrow \operatorname{Perm}(G)$.
$\alpha(G)$ is normalised by $\lambda(\Gamma) \Leftrightarrow \lambda(\Gamma) \subset \operatorname{Norm}_{\text {Perm(}}(\Gamma)(\alpha(G))$

$$
\Leftrightarrow \quad \beta(\Gamma) \subset \operatorname{Norm}_{\operatorname{Perm}(G)}(G)=G
$$

We can avoid calculating in the large group Perm(Г) by looking at regular embeddings instead of regular subgroups.

A regular embedding $\alpha: G \hookrightarrow \operatorname{Perm}(\Gamma)$ gives rise to a bijection

$$
\hat{\alpha}: G \rightarrow \Gamma, \quad \hat{\alpha}(g)=\alpha(g) \cdot e_{\Gamma}
$$

and hence an isomorphism $\operatorname{Perm}(\Gamma) \rightarrow \operatorname{Perm}(G)$. Then the inclusion $\lambda(\Gamma) \rightarrow \operatorname{Perm}(\Gamma)$ translates to a regular embedding $\beta: \Gamma \rightarrow \operatorname{Perm}(G)$.

We can reverse this process, so we get a bijection between regular embeddings $\alpha: G \hookrightarrow \operatorname{Perm}(\Gamma)$ and regular embeddings $\beta: \Gamma \rightarrow \operatorname{Perm}(G)$.
$\alpha(G)$ is normalised by $\lambda(\Gamma) \Leftrightarrow \lambda(\Gamma) \subset \operatorname{Norm}_{\operatorname{Perm}(\Gamma)}(\alpha(G))$
$\Leftrightarrow \beta(\Gamma) \subset \operatorname{Norm}_{\operatorname{Perm}(G)}(G)=G$
$\Leftrightarrow \beta(\Gamma) \subset G \rtimes \operatorname{Aut}(G)=: \operatorname{Hol}(G)$.

We can avoid calculating in the large group Perm(Г) by looking at regular embeddings instead of regular subgroups.

A regular embedding $\alpha: G \hookrightarrow \operatorname{Perm}(\Gamma)$ gives rise to a bijection

$$
\hat{\alpha}: G \rightarrow \Gamma, \quad \hat{\alpha}(g)=\alpha(g) \cdot e_{\Gamma}
$$

and hence an isomorphism $\operatorname{Perm}(\Gamma) \rightarrow \operatorname{Perm}(G)$. Then the inclusion $\lambda(\Gamma) \rightarrow \operatorname{Perm}(\Gamma)$ translates to a regular embedding $\beta: \Gamma \rightarrow \operatorname{Perm}(G)$.

We can reverse this process, so we get a bijection between regular embeddings $\alpha: G \hookrightarrow \operatorname{Perm}(\Gamma)$ and regular embeddings $\beta: \Gamma \rightarrow \operatorname{Perm}(G)$.
$\alpha(G)$ is normalised by $\lambda(\Gamma) \Leftrightarrow \lambda(\Gamma) \subset \operatorname{Norm}_{\operatorname{Perm}(\Gamma)}(\alpha(G))$
$\Leftrightarrow \beta(\Gamma) \subset \operatorname{Norm}_{\operatorname{Perm}(G)}(G)=G$
$\Leftrightarrow \beta(\Gamma) \subset G \rtimes \operatorname{Aut}(G)=: \operatorname{Hol}(G)$.
$\operatorname{Hol}(G)$ is the holomorph of G.

The regular subgroups in $\operatorname{Perm}(\Gamma)$ isomorphic to G are the $\operatorname{Aut}(G)$-orbits of regular embeddings $\alpha: G \rightarrow \operatorname{Perm}(\Gamma)$.

The regular subgroups in $\operatorname{Perm}(\Gamma)$ isomorphic to G are the $\operatorname{Aut}(G)$-orbits of regular embeddings $\alpha: G \rightarrow \operatorname{Perm}(\Gamma)$.

Thus
$e(\Gamma, G)=\#\{\operatorname{Aut}(G)$-orbits of regular embeddings $\alpha: G \rightarrow \operatorname{Perm}(\Gamma)$ with $\alpha(G)$ normalised by $\lambda(\Gamma)\}$

The regular subgroups in $\operatorname{Perm}(\Gamma)$ isomorphic to G are the $\operatorname{Aut}(G)$-orbits of regular embeddings $\alpha: G \rightarrow \operatorname{Perm}(\Gamma)$.

Thus
$e(\Gamma, G)=\#\{\operatorname{Aut}(G)$-orbits of regular embeddings $\alpha: G \rightarrow \operatorname{Perm}(\Gamma)$ with $\alpha(G)$ normalised by $\lambda(\Gamma)\}$

$$
=\frac{\#\{\text { regular embeddings } \beta: \Gamma \rightarrow \operatorname{Hol}(G)\}}{|\operatorname{Aut}(G)|}
$$

The regular subgroups in $\operatorname{Perm}(\Gamma)$ isomorphic to G are the $\operatorname{Aut}(G)$-orbits of regular embeddings $\alpha: G \rightarrow \operatorname{Perm}(\Gamma)$.

Thus
$e(\Gamma, G)=\#\{\operatorname{Aut}(G)$-orbits of regular embeddings $\alpha: G \rightarrow \operatorname{Perm}(\Gamma)$ with $\alpha(G)$ normalised by $\lambda(\Gamma)\}$
$=\frac{\#\{\text { regular embeddings } \beta: \Gamma \rightarrow \operatorname{Hol}(G)\}}{|\operatorname{Aut}(G)|}$
$=\frac{|\operatorname{Aut}(G)|}{|\operatorname{Aut}(\Gamma)|} \#\{$ regular subgroups in $\operatorname{Hol}(G)$ isomorphic to $\Gamma\}$.

The regular subgroups in $\operatorname{Perm}(\Gamma)$ isomorphic to G are the $\operatorname{Aut}(G)$-orbits of regular embeddings $\alpha: G \rightarrow \operatorname{Perm}(\Gamma)$.

Thus
$e(\Gamma, G)=\#\{\operatorname{Aut}(G)$-orbits of regular embeddings $\alpha: G \rightarrow \operatorname{Perm}(\Gamma)$ with $\alpha(G)$ normalised by $\lambda(\Gamma)\}$
$=\frac{\#\{\text { regular embeddings } \beta: \Gamma \rightarrow \operatorname{Hol}(G)\}}{|\operatorname{Aut}(G)|}$
$=\frac{|\operatorname{Aut}(G)|}{|\operatorname{Aut}(\Gamma)|} \#\{$ regular subgroups in $\operatorname{Hol}(G)$ isomorphic to $\Gamma\}$.
So, to count the Hopf-Galois structures of type G on a field extension with Galois group Г, it suffices to look for regular subgroups in $\operatorname{Hol}(G)$, which is much smaller group than Perm(Γ).

II. Counting Skew Braces

Definition

A (left) skew brace $(B,+, *)$ is a set B with binary operations,$+ *$ such that

II. Counting Skew Braces

Definition

A (left) skew brace $(B,+, *)$ is a set B with binary operations,$+ *$ such that

- $(B,+)$ is a group (the additive group of B);

II. Counting Skew Braces

Definition

A (left) skew brace $(B,+, *)$ is a set B with binary operations,$+ *$ such that

- $(B,+)$ is a group (the additive group of B);
- $(B, *)$ is a group (the multiplicative group of B);

II. Counting Skew Braces

Definition

A (left) skew brace $(B,+, *)$ is a set B with binary operations,$+ *$ such that

- $(B,+)$ is a group (the additive group of B);
- $(B, *)$ is a group (the multiplicative group of B);
- $a *(b+c)=a * b-a+a * c \forall a, b, c \in B$.

II. Counting Skew Braces

Definition

A (left) skew brace $(B,+, *)$ is a set B with binary operations,$+ *$ such that

- $(B,+)$ is a group (the additive group of B);
- $(B, *)$ is a group (the multiplicative group of B);
- $a *(b+c)=a * b-a+a * c \forall a, b, c \in B$.
$(B,+, *)$ is a brace if $(B,+)$ is abelian.

II. Counting Skew Braces

Definition

A (left) skew brace $(B,+, *)$ is a set B with binary operations,$+ *$ such that

- $(B,+)$ is a group (the additive group of B);
- $(B, *)$ is a group (the multiplicative group of B);
- $a *(b+c)=a * b-a+a * c \forall a, b, c \in B$.
$(B,+, *)$ is a brace if $(B,+)$ is abelian.
Braces were introduced by Rump (2007) to study non-degenerate involutive set-theoretical solutions of the Yang-Baxter Equation (YBE). They were generalised to skew braces by Guarnieri \& Vendramin (2017). Skew braces give non-involutive solutions to YBE.

If $(B,+, *)$ is a skew brace, then we have a group homomorphism

$$
\lambda:(B, *) \rightarrow \operatorname{Aut}(B,+), \quad b \mapsto \lambda_{b} \text { with } \lambda_{b}(a)=b * a-a .
$$

Thus $(B, *)$ acts on $(B,+)$.

If $(B,+, *)$ is a skew brace, then we have a group homomorphism

$$
\lambda:(B, *) \rightarrow \operatorname{Aut}(B,+), \quad b \mapsto \lambda_{b} \text { with } \lambda_{b}(a)=b * a-a .
$$

Thus $(B, *)$ acts on $(B,+)$.
We also have a bijection $i:(B, *) \rightarrow(B,+)$ induced by the identity map on B. This satisfies the 1 -cocycle identity

$$
i(b c)=i(b)+\lambda_{b}(i(c))
$$

If $(B,+, *)$ is a skew brace, then we have a group homomorphism

$$
\lambda:(B, *) \rightarrow \operatorname{Aut}(B,+), \quad b \mapsto \lambda_{b} \text { with } \lambda_{b}(a)=b * a-a .
$$

Thus $(B, *)$ acts on $(B,+)$.
We also have a bijection $i:(B, *) \rightarrow(B,+)$ induced by the identity map on B. This satisfies the 1 -cocycle identity

$$
i(b c)=i(b)+\lambda_{b}(i(c))
$$

Now $\operatorname{Hol}(B,+)=(B,+) \rtimes \operatorname{Aut}(B,+)$, and

$$
(i, \lambda):(B, *) \rightarrow(B,+) \rtimes \operatorname{Aut}(B,+)
$$

is a homomorphism. Indeed, it is a regular embedding.

If $(B,+, *)$ is a skew brace, then we have a group homomorphism

$$
\lambda:(B, *) \rightarrow \operatorname{Aut}(B,+), \quad b \mapsto \lambda_{b} \text { with } \lambda_{b}(a)=b * a-a .
$$

Thus $(B, *)$ acts on $(B,+)$.
We also have a bijection $i:(B, *) \rightarrow(B,+)$ induced by the identity map on B. This satisfies the 1-cocycle identity

$$
i(b c)=i(b)+\lambda_{b}(i(c))
$$

Now $\operatorname{Hol}(B,+)=(B,+) \rtimes \operatorname{Aut}(B,+)$, and

$$
(i, \lambda):(B, *) \rightarrow(B,+) \rtimes \operatorname{Aut}(B,+)
$$

is a homomorphism. Indeed, it is a regular embedding.
Conversely, given groups M, A, we can decompose a regular embedding $M \rightarrow \operatorname{Hol}(A)$ into a homomorphism $M \rightarrow \operatorname{Aut}(A)$ and a bijective cocycle $M \rightarrow A$ with respect to the corresponding action of M on A.

Thus, given finite groups M, A of the same order, regular embeddings $M \rightarrow \operatorname{Hol}(A)$ give rise to left skew braces, and conversely. Composing the embedding with an element of $\operatorname{Aut}(M)$ or of $\operatorname{Aut}(A)$ will not change the isomorphism type of the skew brace.

Thus, given finite groups M, A of the same order, regular embeddings $M \rightarrow \operatorname{Hol}(A)$ give rise to left skew braces, and conversely. Composing the embedding with an element of $\operatorname{Aut}(M)$ or of $\operatorname{Aut}(A)$ will not change the isomorphism type of the skew brace.

Definition

Let $b(M, A)$ be the number of left skew braces (up to isomorphism of skew braces) with multiplicative group isomorphic to M and additive group isomorphic to A.

Thus, given finite groups M, A of the same order, regular embeddings $M \rightarrow \operatorname{Hol}(A)$ give rise to left skew braces, and conversely. Composing the embedding with an element of $\operatorname{Aut}(M)$ or of $\operatorname{Aut}(A)$ will not change the isomorphism type of the skew brace.

Definition

Let $b(M, A)$ be the number of left skew braces (up to isomorphism of skew braces) with multiplicative group isomorphic to M and additive group isomorphic to A.

Then $b(M, A)$ is the number of $(\operatorname{Aut}(M) \times \operatorname{Aut}(A))$-orbits of regular embeddings $M \rightarrow \operatorname{Hol}(A)$.

Thus, given finite groups M, A of the same order, regular embeddings $M \rightarrow \operatorname{Hol}(A)$ give rise to left skew braces, and conversely. Composing the embedding with an element of $\operatorname{Aut}(M)$ or of $\operatorname{Aut}(A)$ will not change the isomorphism type of the skew brace.

Definition

Let $b(M, A)$ be the number of left skew braces (up to isomorphism of skew braces) with multiplicative group isomorphic to M and additive group isomorphic to A.

Then $b(M, A)$ is the number of $(\operatorname{Aut}(M) \times \operatorname{Aut}(A))$-orbits of regular embeddings $M \rightarrow \operatorname{Hol}(A)$.

Summmary so far:

The two problems are closely related (but not equivalent):

Thus, given finite groups M, A of the same order, regular embeddings $M \rightarrow \operatorname{Hol}(A)$ give rise to left skew braces, and conversely. Composing the embedding with an element of $\operatorname{Aut}(M)$ or of $\operatorname{Aut}(A)$ will not change the isomorphism type of the skew brace.

Definition

Let $b(M, A)$ be the number of left skew braces (up to isomorphism of skew braces) with multiplicative group isomorphic to M and additive group isomorphic to A.

Then $b(M, A)$ is the number of $(\operatorname{Aut}(M) \times \operatorname{Aut}(A))$-orbits of regular embeddings $M \rightarrow \operatorname{Hol}(A)$.

Summmary so far:

The two problems are closely related (but not equivalent):
(a) finding the number $e(\Gamma, G)$ of Hopf-Galois structures of type G on Galois extension of fields s with Galois group 「,

Thus, given finite groups M, A of the same order, regular embeddings $M \rightarrow \operatorname{Hol}(A)$ give rise to left skew braces, and conversely. Composing the embedding with an element of $\operatorname{Aut}(M)$ or of $\operatorname{Aut}(A)$ will not change the isomorphism type of the skew brace.

Definition

Let $b(M, A)$ be the number of left skew braces (up to isomorphism of skew braces) with multiplicative group isomorphic to M and additive group isomorphic to A.

Then $b(M, A)$ is the number of $(\operatorname{Aut}(M) \times \operatorname{Aut}(A))$-orbits of regular embeddings $M \rightarrow \operatorname{Hol}(A)$.

Summmary so far:

The two problems are closely related (but not equivalent):
(a) finding the number $e(\Gamma, G)$ of Hopf-Galois structures of type G on Galois extension of fields s with Galois group Γ, and
(b) finding the number $b(\Gamma, G)$ of left skew braces (up to isomorphism) with multiplicative group Γ and additive group G.

$$
e(\Gamma, G)=\#\{\operatorname{Aut}(\Gamma) \text {-orbits of regular embeddings } \Gamma \rightarrow \operatorname{Hol}(G)\}
$$

$$
\begin{aligned}
e(\Gamma, G) & =\#\{\operatorname{Aut}(\Gamma) \text {-orbits of regular embeddings } \Gamma \rightarrow \operatorname{Hol}(G)\} \\
& =\frac{|\operatorname{Aut}(G)|}{|\operatorname{Aut}(\Gamma)|} \#\{\text { regular subgroups in } \operatorname{Hol}(G) \text { isomorphic to } \Gamma\},
\end{aligned}
$$

$$
\begin{aligned}
e(\Gamma, G) & =\#\{\operatorname{Aut}(\Gamma) \text {-orbits of regular embeddings } \Gamma \rightarrow \operatorname{Hol}(G)\} \\
& =\frac{|\operatorname{Aut}(G)|}{|\operatorname{Aut}(\Gamma)|} \#\{\text { regular subgroups in } \operatorname{Hol}(G) \text { isomorphic to } \Gamma\},
\end{aligned}
$$

while

$$
\begin{gathered}
b(\Gamma, G)=\#\{\operatorname{Aut}(\Gamma) \times \operatorname{Aut}(G) \text {-orbits of regular } \\
\text { embeddings } \Gamma \rightarrow \operatorname{Hol}(G)\}
\end{gathered}
$$

$$
\begin{aligned}
e(\Gamma, G) & =\#\{\operatorname{Aut}(\Gamma) \text {-orbits of regular embeddings } \Gamma \rightarrow \operatorname{Hol}(G)\} \\
& =\frac{|\operatorname{Aut}(G)|}{|\operatorname{Aut}(\Gamma)|} \#\{\text { regular subgroups in } \operatorname{Hol}(G) \text { isomorphic to } \Gamma\}
\end{aligned}
$$

while

$$
\begin{aligned}
b(\Gamma, G)= & \#\{\operatorname{Aut}(\Gamma) \times \operatorname{Aut}(G) \text {-orbits of regular } \\
& \text { embeddings } \Gamma \rightarrow \operatorname{Hol}(G)\} \\
= & \#\{\operatorname{Aut}(G) \text {-orbits of regular subgroups in } \operatorname{Hol}(G) \\
& \text { isomorphic to } \Gamma\} .
\end{aligned}
$$

$$
\begin{aligned}
e(\Gamma, G) & =\#\{\operatorname{Aut}(\Gamma) \text {-orbits of regular embeddings } \Gamma \rightarrow \operatorname{Hol}(G)\} \\
& =\frac{|\operatorname{Aut}(G)|}{|\operatorname{Aut}(\Gamma)|} \#\{\text { regular subgroups in } \operatorname{Hol}(G) \text { isomorphic to } \Gamma\}
\end{aligned}
$$

while

$$
\begin{aligned}
b(\Gamma, G)= & \#\{\operatorname{Aut}(\Gamma) \times \operatorname{Aut}(G) \text {-orbits of regular } \\
& \text { embeddings } \Gamma \rightarrow \operatorname{Hol}(G)\} \\
= & \#\{\operatorname{Aut}(G) \text {-orbits of regular subgroups in } \operatorname{Hol}(G) \\
& \text { isomorphic to } \Gamma\} .
\end{aligned}
$$

Each of the groups $\operatorname{Aut}(\Gamma)$ and $\operatorname{Aut}(G)$ acts freely on the set of regular embeddings (so all orbits have the same size), but $\operatorname{Aut}(\Gamma) \times \operatorname{Aut}(G)$ does not act freely, and its orbits may have different sizes.

$$
\begin{aligned}
e(\Gamma, G) & =\#\{\operatorname{Aut}(\Gamma) \text {-orbits of regular embeddings } \Gamma \rightarrow \operatorname{Hol}(G)\} \\
& =\frac{|\operatorname{Aut}(G)|}{|\operatorname{Aut}(\Gamma)|} \#\{\text { regular subgroups in } \operatorname{Hol}(G) \text { isomorphic to } \Gamma\}
\end{aligned}
$$

while

$$
\begin{aligned}
b(\Gamma, G)= & \#\{\operatorname{Aut}(\Gamma) \times \operatorname{Aut}(G) \text {-orbits of regular } \\
& \text { embeddings } \Gamma \rightarrow \operatorname{Hol}(G)\} \\
= & \#\{\operatorname{Aut}(G) \text {-orbits of regular subgroups in } \operatorname{Hol}(G) \\
& \text { isomorphic to } \Gamma\} .
\end{aligned}
$$

Each of the groups $\operatorname{Aut}(\Gamma)$ and $\operatorname{Aut}(G)$ acts freely on the set of regular embeddings (so all orbits have the same size), but $\operatorname{Aut}(\Gamma) \times \operatorname{Aut}(G)$ does not act freely, and its orbits may have different sizes.

Thus there is no simple formula relating $e(\Gamma, G)$ and $b(\Gamma, G)$.

III. Groups of squarefree order

Let n be squarefree. If G is a group of order n, then all Sylow subgroups of G are cyclic, so G is metabelian.

III. Groups of squarefree order

Let n be squarefree. If G is a group of order n, then all Sylow subgroups of G are cyclic, so G is metabelian.
In fact

$$
G \cong G(d, e, k)=\left\langle\sigma, \tau: \sigma^{e}=1=\tau^{d}, \tau \sigma \tau^{-1}=\tau^{k}\right\rangle
$$

where $d e=n$ and $\operatorname{ord}_{e}(k)=d$.

III. Groups of squarefree order

Let n be squarefree. If G is a group of order n, then all Sylow subgroups of G are cyclic, so G is metabelian.
In fact

$$
G \cong G(d, e, k)=\left\langle\sigma, \tau: \sigma^{e}=1=\tau^{d}, \tau \sigma \tau^{-1}=\tau^{k}\right\rangle
$$

where $d e=n$ and $\operatorname{ord}_{e}(k)=d$.
We have $G(d, e, k) \cong G\left(d^{\prime}, e^{\prime}, k^{\prime}\right)$ if and only if

- $d=d^{\prime}$,

III. Groups of squarefree order

Let n be squarefree. If G is a group of order n, then all Sylow subgroups of G are cyclic, so G is metabelian.
In fact

$$
G \cong G(d, e, k)=\left\langle\sigma, \tau: \sigma^{e}=1=\tau^{d}, \tau \sigma \tau^{-1}=\tau^{k}\right\rangle
$$

where $d e=n$ and $\operatorname{ord}_{e}(k)=d$.
We have $G(d, e, k) \cong G\left(d^{\prime}, e^{\prime}, k^{\prime}\right)$ if and only if

- $d=d^{\prime}$,
- $e=e^{\prime}$, and

III. Groups of squarefree order

Let n be squarefree. If G is a group of order n, then all Sylow subgroups of G are cyclic, so G is metabelian.
In fact

$$
G \cong G(d, e, k)=\left\langle\sigma, \tau: \sigma^{e}=1=\tau^{d}, \tau \sigma \tau^{-1}=\tau^{k}\right\rangle
$$

where $d e=n$ and $\operatorname{ord}_{e}(k)=d$.
We have $G(d, e, k) \cong G\left(d^{\prime}, e^{\prime}, k^{\prime}\right)$ if and only if

- $d=d^{\prime}$,
- $e=e^{\prime}$, and
- k, k^{\prime} generate the same cyclic subgroup of order d in \mathbb{Z}_{e}^{\times}.

III. Groups of squarefree order

Let n be squarefree. If G is a group of order n, then all Sylow subgroups of G are cyclic, so G is metabelian.
In fact

$$
G \cong G(d, e, k)=\left\langle\sigma, \tau: \sigma^{e}=1=\tau^{d}, \tau \sigma \tau^{-1}=\tau^{k}\right\rangle
$$

where $d e=n$ and $\operatorname{ord}_{e}(k)=d$.
We have $G(d, e, k) \cong G\left(d^{\prime}, e^{\prime}, k^{\prime}\right)$ if and only if

- $d=d^{\prime}$,
- $e=e^{\prime}$, and
- k, k^{\prime} generate the same cyclic subgroup of order d in \mathbb{Z}_{e}^{\times}.

Let

$$
z=\operatorname{gcd}(e, k-1), \quad g=e / z
$$

III. Groups of squarefree order

Let n be squarefree. If G is a group of order n, then all Sylow subgroups of G are cyclic, so G is metabelian.
In fact

$$
G \cong G(d, e, k)=\left\langle\sigma, \tau: \sigma^{e}=1=\tau^{d}, \tau \sigma \tau^{-1}=\tau^{k}\right\rangle
$$

where $d e=n$ and $\operatorname{ord}_{e}(k)=d$.
We have $G(d, e, k) \cong G\left(d^{\prime}, e^{\prime}, k^{\prime}\right)$ if and only if

- $d=d^{\prime}$,
- $e=e^{\prime}$, and
- k, k^{\prime} generate the same cyclic subgroup of order d in \mathbb{Z}_{e}^{\times}.

Let

$$
z=\operatorname{gcd}(e, k-1), \quad g=e / z
$$

Then the centre of G is cyclic of order z, and the commutator subgroup of G is cyclic of order g.

The primes p dividing n are of 3 kinds:

The primes p dividing n are of 3 kinds:

- $p \mid z$, i.e. p is "central";

The primes p dividing n are of 3 kinds:

- $p \mid z$, i.e. p is "central";
- $p \mid g$, i.e. p is "acted on";

The primes p dividing n are of 3 kinds:

- $p \mid z$, i.e. p is "central";
- $p \mid g$, i.e. p is "acted on";
- $p \mid d$, i.e. p "acts".

The primes p dividing n are of 3 kinds:

- $p \mid z$, i.e. p is "central";
- $p \mid g$, i.e. p is "acted on";
- $p \mid d$, i.e. p "acts".

Finer invariants of G are $r_{q}=\operatorname{ord}_{q}(k)$ for each prime $q \mid e$.

The primes p dividing n are of 3 kinds:

- $p \mid z$, i.e. p is "central";
- $p \mid g$, i.e. p is "acted on";
- $p \mid d$, i.e. p "acts".

Finer invariants of G are $r_{q}=\operatorname{ord}_{q}(k)$ for each prime $q \mid e$.Then

$$
r_{q}=1 \Leftrightarrow q\left|z, \quad r_{q}\right| \operatorname{gcd}(d, q-1), \quad \operatorname{lcm}_{q \mid e}\left\{r_{q}\right\}=d
$$

The primes p dividing n are of 3 kinds:

- $p \mid z$, i.e. p is "central";
- $p \mid g$, i.e. p is "acted on";
- $p \mid d$, i.e. p "acts".

Finer invariants of G are $r_{q}=\operatorname{ord}_{q}(k)$ for each prime $q \mid e$.Then

$$
r_{q}=1 \Leftrightarrow q\left|z, \quad r_{q}\right| \operatorname{gcd}(d, q-1), \quad \operatorname{lcm}_{q \mid e}\left\{r_{q}\right\}=d .
$$

In general, d, g, z and the r_{q} do not determine G up to isomorphism.

The primes p dividing n are of 3 kinds:

- $p \mid z$, i.e. p is "central";
- $p \mid g$, i.e. p is "acted on";
- $p \mid d$, i.e. p "acts".

Finer invariants of G are $r_{q}=\operatorname{ord}_{q}(k)$ for each prime $q \mid e$.Then

$$
r_{q}=1 \Leftrightarrow q\left|z, \quad r_{q}\right| \operatorname{gcd}(d, q-1), \quad \operatorname{lcm}_{q \mid e}\left\{r_{q}\right\}=d .
$$

In general, d, g, z and the r_{q} do not determine G up to isomorphism.

Example

$n=2 \cdot 3 \cdot 7 \cdot 13, d=6, e=91$.
Here $G_{1} \cong G_{2}$, but no two of $G_{2}, G_{3}, G_{4}, G_{5}$ are isomorphic.

	k	$k \bmod 7$	$k \bmod 13$	r_{7}	r_{13}	g	z
G_{1}	3	3	3	6	3	91	1
G_{2}	61	5	9	6	3	91	1
G_{3}	10	3	10	6	3	91	1
G_{4}	51	2	12	3	2	91	1
G_{5}	36	1	10	1	6	13	7

$\operatorname{Aut}(G)$ is generated by θ where

$$
\theta(\sigma)=\sigma, \quad \theta(\tau)=\sigma^{z} \tau
$$

and by ϕ_{s} for $s \in \mathbb{Z}_{e}^{\times}$, where

$$
\phi_{s}(\sigma)=\sigma^{s}, \quad \phi_{s}(\tau)=\tau
$$

$\operatorname{Aut}(G)$ is generated by θ where

$$
\theta(\sigma)=\sigma, \quad \theta(\tau)=\sigma^{z} \tau
$$

and by ϕ_{s} for $s \in \mathbb{Z}_{e}^{\times}$, where

$$
\phi_{s}(\sigma)=\sigma^{s}, \quad \phi_{s}(\tau)=\tau
$$

Thus

$$
\operatorname{Aut}(G) \cong \mathbb{Z}_{g} \rtimes \mathbb{Z}_{e}^{\times}, \quad|\operatorname{Aut}(G)|=g \varphi(e)
$$

$\operatorname{Aut}(G)$ is generated by θ where

$$
\theta(\sigma)=\sigma, \quad \theta(\tau)=\sigma^{z} \tau
$$

and by ϕ_{s} for $s \in \mathbb{Z}_{e}^{\times}$, where

$$
\phi_{s}(\sigma)=\sigma^{s}, \quad \phi_{s}(\tau)=\tau
$$

Thus

$$
\operatorname{Aut}(G) \cong \mathbb{Z}_{g} \rtimes \mathbb{Z}_{e}^{\times}, \quad|\operatorname{Aut}(G)|=g \varphi(e)
$$

Write elements of $\operatorname{Hol}(G)=G \rtimes \operatorname{Aut}(G)$ as $[x, \alpha]$ with $x \in G$ and $\alpha \in \operatorname{Aut}(G)$. The multiplication in $\operatorname{Hol}(G)$, and the action of $\operatorname{Hol}(G)$ on G, are given by

$$
[x \alpha][y, \beta]=[x \alpha(y), \alpha \beta], \quad[x, \alpha] \cdot y=x \alpha(y)
$$

$\operatorname{Aut}(G)$ is generated by θ where

$$
\theta(\sigma)=\sigma, \quad \theta(\tau)=\sigma^{z} \tau
$$

and by ϕ_{s} for $s \in \mathbb{Z}_{e}^{\times}$, where

$$
\phi_{s}(\sigma)=\sigma^{s}, \quad \phi_{s}(\tau)=\tau
$$

Thus

$$
\operatorname{Aut}(G) \cong \mathbb{Z}_{g} \rtimes \mathbb{Z}_{e}^{\times}, \quad|\operatorname{Aut}(G)|=g \varphi(e)
$$

Write elements of $\operatorname{Hol}(G)=G \rtimes \operatorname{Aut}(G)$ as $[x, \alpha]$ with $x \in G$ and $\alpha \in \operatorname{Aut}(G)$. The multiplication in $\operatorname{Hol}(G)$, and the action of $\operatorname{Hol}(G)$ on G, are given by

$$
[x \alpha][y, \beta]=[x \alpha(y), \alpha \beta], \quad[x, \alpha] \cdot y=x \alpha(y)
$$

Any element of $\operatorname{Hol}(G)$ can be written $\left[\sigma^{a} \tau^{b}, \theta^{c} \phi_{s}\right]$ for suitable a, b, c, s.
IV. Braces and Hopf-Galois Structures of Squarefree Order

Let n be squarefree, and consider two groups of order n :

$$
G:=G(d, e, k), \quad \Gamma:=G(\delta, \varepsilon, \kappa) .
$$

IV. Braces and Hopf-Galois Structures of Squarefree Order

Let n be squarefree, and consider two groups of order n :

$$
G:=G(d, e, k), \quad \Gamma:=G(\delta, \varepsilon, \kappa) .
$$

Let $z=\operatorname{gcd}(e, k-1), g=e / z$ and $\zeta=\operatorname{gcd}(\varepsilon, \kappa-1), \gamma=\varepsilon / \zeta$.
IV. Braces and Hopf-Galois Structures of Squarefree Order

Let n be squarefree, and consider two groups of order n :

$$
G:=G(d, e, k), \quad \Gamma:=G(\delta, \varepsilon, \kappa) .
$$

Let $z=\operatorname{gcd}(e, k-1), g=e / z$ and $\zeta=\operatorname{gcd}(\varepsilon, \kappa-1), \gamma=\varepsilon / \zeta$.
Also, let

$$
w=\varphi(\operatorname{gcd}(d, \delta))
$$

IV. Braces and Hopf-Galois Structures of Squarefree Order Let n be squarefree, and consider two groups of order n :

$$
G:=G(d, e, k), \quad \Gamma:=G(\delta, \varepsilon, \kappa) .
$$

Let $z=\operatorname{gcd}(e, k-1), g=e / z$ and $\zeta=\operatorname{gcd}(\varepsilon, \kappa-1), \gamma=\varepsilon / \zeta$.
Also, let

$$
w=\varphi(\operatorname{gcd}(d, \delta))
$$

The result for skew braces is
Theorem 1 (Alabdali + B.)

$$
b(\Gamma, G)= \begin{cases}2^{\omega(g)} w & \text { if } \gamma \mid e \\ 0 & \text { if } \gamma \nmid e\end{cases}
$$

where $\omega(g)$ is the number of (distinct) primes dividing g.
IV. Braces and Hopf-Galois Structures of Squarefree Order Let n be squarefree, and consider two groups of order n :

$$
G:=G(d, e, k), \quad \Gamma:=G(\delta, \varepsilon, \kappa)
$$

Let $z=\operatorname{gcd}(e, k-1), g=e / z$ and $\zeta=\operatorname{gcd}(\varepsilon, \kappa-1), \gamma=\varepsilon / \zeta$.
Also, let

$$
w=\varphi(\operatorname{gcd}(d, \delta))
$$

The result for skew braces is
Theorem 1 (Alabdali + B.)

$$
b(\Gamma, G)= \begin{cases}2^{\omega(g)} w & \text { if } \gamma \mid e \\ 0 & \text { if } \gamma \nmid e\end{cases}
$$

where $\omega(g)$ is the number of (distinct) primes dividing g.
The result for Hopf-Galois structures depends in a more complicated way on interplay of the structures of G and Γ.

We can replace κ by any element of

$$
\mathcal{K}=\left\{\kappa^{r}: r \in \mathbb{Z}_{\delta}^{\times}\right\}
$$

without changing the isomorphism type of Γ.

We can replace κ by any element of

$$
\mathcal{K}=\left\{\kappa^{r}: r \in \mathbb{Z}_{\delta}^{\times}\right\}
$$

without changing the isomorphism type of Γ.
The group

$$
\Delta:=\left\{m \in \mathbb{Z}_{\delta}^{\times}: m \equiv 1 \quad(\bmod \operatorname{gcd}(d, \delta))\right\}
$$

acts freely \mathcal{K} with $w=\varphi(\operatorname{gcd}(d, \delta))$ orbits.

We can replace κ by any element of

$$
\mathcal{K}=\left\{\kappa^{r}: r \in \mathbb{Z}_{\delta}^{\times}\right\}
$$

without changing the isomorphism type of Γ.
The group

$$
\Delta:=\left\{m \in \mathbb{Z}_{\delta}^{\times}: m \equiv 1 \quad(\bmod \operatorname{gcd}(d, \delta))\right\}
$$

acts freely \mathcal{K} with $w=\varphi(\operatorname{gcd}(d, \delta))$ orbits.
Let $\kappa_{1}, \ldots, \kappa_{w}$ be a system of orbit representatives.

We can replace κ by any element of

$$
\mathcal{K}=\left\{\kappa^{r}: r \in \mathbb{Z}_{\delta}^{\times}\right\}
$$

without changing the isomorphism type of Γ.
The group

$$
\Delta:=\left\{m \in \mathbb{Z}_{\delta}^{\times}: m \equiv 1 \quad(\bmod \operatorname{gcd}(d, \delta))\right\}
$$

acts freely \mathcal{K} with $w=\varphi(\operatorname{gcd}(d, \delta))$ orbits.
Let $\kappa_{1}, \ldots, \kappa_{w}$ be a system of orbit representatives.
Recall $r_{q}=\operatorname{ord}_{q}(k)$ for primes $q \mid e$. Similarly, let $\rho_{q}=\operatorname{ord}_{q}(\kappa)$ for $q \mid \epsilon$.

We can replace κ by any element of

$$
\mathcal{K}=\left\{\kappa^{r}: r \in \mathbb{Z}_{\delta}^{\times}\right\}
$$

without changing the isomorphism type of Γ.
The group

$$
\Delta:=\left\{m \in \mathbb{Z}_{\delta}^{\times}: m \equiv 1 \quad(\bmod \operatorname{gcd}(d, \delta))\right\}
$$

acts freely \mathcal{K} with $w=\varphi(\operatorname{gcd}(d, \delta))$ orbits.
Let $\kappa_{1}, \ldots, \kappa_{w}$ be a system of orbit representatives.
Recall $r_{q}=\operatorname{ord}_{q}(k)$ for primes $q \mid e$. Similarly, let $\rho_{q}=\operatorname{ord}_{q}(\kappa)$ for $q \mid \epsilon$.
Then let

$$
\begin{aligned}
& S=\left\{\text { primes } q \mid \operatorname{gcd}(g, \gamma): \rho_{q}=r_{q}>2\right\} \\
& T=\left\{\text { primes } q \mid \operatorname{gcd}(g, \gamma): \rho_{q}=r_{q}=2\right\}
\end{aligned}
$$

We can replace κ by any element of

$$
\mathcal{K}=\left\{\kappa^{r}: r \in \mathbb{Z}_{\delta}^{\times}\right\}
$$

without changing the isomorphism type of Γ.
The group

$$
\Delta:=\left\{m \in \mathbb{Z}_{\delta}^{\times}: m \equiv 1 \quad(\bmod \operatorname{gcd}(d, \delta))\right\}
$$

acts freely \mathcal{K} with $w=\varphi(\operatorname{gcd}(d, \delta))$ orbits.
Let $\kappa_{1}, \ldots, \kappa_{w}$ be a system of orbit representatives.
Recall $r_{q}=\operatorname{ord}_{q}(k)$ for primes $q \mid e$. Similarly, let $\rho_{q}=\operatorname{ord}_{q}(\kappa)$ for $q \mid \epsilon$.
Then let

$$
\begin{aligned}
& S=\left\{\text { primes } q \mid \operatorname{gcd}(g, \gamma): \rho_{q}=r_{q}>2\right\} \\
& T=\left\{\text { primes } q \mid \operatorname{gcd}(g, \gamma): \rho_{q}=r_{q}=2\right\}
\end{aligned}
$$

For $1 \leq h \leq w$, let

$$
\begin{gathered}
S_{h}^{+}=\left\{q \in S: k \equiv \kappa_{h} \quad(\bmod q)\right\} \\
S_{h}^{-}=\left\{q \in S: k \equiv \kappa_{h}^{-1} \quad(\bmod q)\right\} \\
S_{h}=S_{h}^{+} \cup S_{h}^{-}
\end{gathered}
$$

Theorem 2 (Alabdali + B.)

$$
e(\Gamma, G)= \begin{cases}\frac{2^{\omega(g)} \varphi(d) \gamma}{w}\left(\prod_{q \in T} \frac{1}{q}\right) \sum_{h=1}^{w} \prod_{q \in S_{h}} \frac{q+1}{q} & \text { if } \gamma \mid e, \\ 0 & \text { if } \gamma \nmid e .\end{cases}
$$

Theorem 2 (Alabdali + B.)

$$
e(\Gamma, G)= \begin{cases}\frac{2^{\omega(g)} \varphi(d) \gamma}{w}\left(\prod_{q \in T} \frac{1}{q}\right) \sum_{h=1}^{w} \prod_{q \in S_{h}} \frac{q+1}{q} & \text { if } \gamma \mid e, \\ 0 & \text { if } \gamma \nmid e .\end{cases}
$$

Remark

Although Theorem 1 is simpler to state than Theorem 2, I do not know how to prove Theorem 1 without proving Theorem 2 first.

Sketch of proofs

$$
\operatorname{Hol}(G)=G \rtimes \operatorname{Aut}(G)=\left\{\left[\sigma^{a} \tau^{b}, \theta^{c} \phi_{s}\right]\right\}
$$

Sketch of proofs

$$
\operatorname{Hol}(G)=G \rtimes \operatorname{Aut}(G)=\left\{\left[\sigma^{a} \tau^{b}, \theta^{c} \phi_{s}\right]\right\}
$$

Inside $\operatorname{Hol}(G)$, we need to find all regular subgroups isomorphic to Γ.

Sketch of proofs

$$
\operatorname{Hol}(G)=G \rtimes \operatorname{Aut}(G)=\left\{\left[\sigma^{a} \tau^{b}, \theta^{c} \phi_{s}\right]\right\}
$$

Inside $\operatorname{Hol}(G)$, we need to find all regular subgroups isomorphic to Γ.
We choose an alternative presentation for Γ :

$$
\Gamma=G(\delta, \epsilon, \kappa)=\left\langle X, Y: X^{\gamma}=1=Y^{\zeta \delta}, Y X Y^{-1^{\star}}=X^{\kappa}\right\rangle
$$

Sketch of proofs

$$
\operatorname{Hol}(G)=G \rtimes \operatorname{Aut}(G)=\left\{\left[\sigma^{a} \tau^{b}, \theta^{c} \phi_{s}\right]\right\}
$$

Inside $\operatorname{Hol}(G)$, we need to find all regular subgroups isomorphic to Γ.
We choose an alternative presentation for Γ :

$$
\Gamma=G(\delta, \epsilon, \kappa)=\left\langle X, Y: X^{\gamma}=1=Y^{\zeta \delta}, Y X Y^{-1^{\star}}=X^{\kappa}\right\rangle
$$

We look for elements $X, Y \in \operatorname{Hol}(G)$ satisfying these relations.

Sketch of proofs

$$
\operatorname{Hol}(G)=G \rtimes \operatorname{Aut}(G)=\left\{\left[\sigma^{a} \tau^{b}, \theta^{c} \phi_{s}\right]\right\}
$$

Inside $\operatorname{Hol}(G)$, we need to find all regular subgroups isomorphic to Γ.
We choose an alternative presentation for Γ :

$$
\Gamma=G(\delta, \epsilon, \kappa)=\left\langle X, Y: X^{\gamma}=1=Y^{\zeta \delta}, Y X Y^{-1^{\star}}=X^{\kappa}\right\rangle
$$

We look for elements $X, Y \in \operatorname{Hol}(G)$ satisfying these relations. As X is in the commutator subgroup of Γ, and so of $\operatorname{Hol}(G)$, it cannot involve τ. It follows that $\gamma \mid e$ if any such subgroups exist.

Sketch of proofs

$$
\operatorname{Hol}(G)=G \rtimes \operatorname{Aut}(G)=\left\{\left[\sigma^{a} \tau^{b}, \theta^{c} \phi_{s}\right]\right\}
$$

Inside $\operatorname{Hol}(G)$, we need to find all regular subgroups isomorphic to Γ.
We choose an alternative presentation for Γ :

$$
\Gamma=G(\delta, \epsilon, \kappa)=\left\langle X, Y: X^{\gamma}=1=Y^{\zeta \delta}, Y X Y^{-1^{\prime}}=X^{\kappa}\right\rangle
$$

We look for elements $X, Y \in \operatorname{Hol}(G)$ satisfying these relations. As X is in the commutator subgroup of Γ, and so of $\operatorname{Hol}(G)$, it cannot involve τ. It follows that $\gamma \mid e$ if any such subgroups exist. Also, X contains no ϕ_{s} factor: $X=\left[\sigma^{a}, \theta^{c}\right]$.

Sketch of proofs

$$
\operatorname{Hol}(G)=G \rtimes \operatorname{Aut}(G)=\left\{\left[\sigma^{a} \tau^{b}, \theta^{c} \phi_{s}\right]\right\}
$$

Inside $\operatorname{Hol}(G)$, we need to find all regular subgroups isomorphic to Γ.
We choose an alternative presentation for Γ :

$$
\Gamma=G(\delta, \epsilon, \kappa)=\left\langle X, Y: X^{\gamma}=1=Y^{\zeta \delta}, Y X Y^{-1^{\prime}}=X^{\kappa}\right\rangle
$$

We look for elements $X, Y \in \operatorname{Hol}(G)$ satisfying these relations. As X is in the commutator subgroup of Γ, and so of $\operatorname{Hol}(G)$, it cannot involve τ. It follows that $\gamma \mid e$ if any such subgroups exist.
Also, X contains no ϕ_{s} factor: $X=\left[\sigma^{a}, \theta^{c}\right]$.
We can choose Y of the form [$\sigma^{u} \tau, \theta^{v} \phi_{t}$] (where τ has exponent 1), at the expense of replacing κ by some κ^{r}.

Sketch of proofs

$$
\operatorname{Hol}(G)=G \rtimes \operatorname{Aut}(G)=\left\{\left[\sigma^{a} \tau^{b}, \theta^{c} \phi_{s}\right]\right\} .
$$

Inside $\operatorname{Hol}(G)$, we need to find all regular subgroups isomorphic to Γ.
We choose an alternative presentation for Γ :

$$
\Gamma=G(\delta, \epsilon, \kappa)=\left\langle X, Y: X^{\gamma}=1=Y^{\zeta \delta}, Y X Y^{-1^{\top}}=X^{\kappa}\right\rangle .
$$

We look for elements $X, Y \in \operatorname{Hol}(G)$ satisfying these relations.
As X is in the commutator subgroup of Γ, and so of $\operatorname{Hol}(G)$, it cannot involve τ. It follows that $\gamma \mid e$ if any such subgroups exist.
Also, X contains no ϕ_{s} factor: $X=\left[\sigma^{a}, \theta^{c}\right]$.
We can choose Y of the form $\left[\sigma^{u} \tau, \theta^{v} \phi_{t}\right.$] (where τ has exponent 1), at the expense of replacing κ by some κ^{r}.
In fact, we can choose Y so $Y X Y^{-1}=X^{\kappa_{h}}$ for exactly one $h \in\{1, \ldots, w\}$, so the regular subgroups fall into w families \mathcal{F}_{h}.

Each subgroup in the family \mathcal{F}_{h} contains exactly $\gamma \varphi(e) w / \varphi(\delta)$ pairs of generators (X, Y) with

$$
X=\left[\sigma^{a}, \theta^{c}\right], \quad Y=\left[\sigma^{u} \tau, \theta^{\vee} \phi_{t}\right], \quad Y X Y^{-1}=X^{\kappa_{h}} .
$$

Each subgroup in the family \mathcal{F}_{h} contains exactly $\gamma \varphi(e) w / \varphi(\delta)$ pairs of generators (X, Y) with

$$
X=\left[\sigma^{a}, \theta^{c}\right], \quad Y=\left[\sigma^{u} \tau, \theta^{\vee} \phi_{t}\right], \quad Y X Y^{-1}=X^{\kappa_{h}}
$$

Let \mathcal{N}_{h} be the set of quintuples

$$
(t, a, c, u, v) \in \mathbb{Z}_{e}^{\times} \times \mathbb{Z}_{e} \times \mathbb{Z}_{g} \times \mathbb{Z}_{e} \times \mathbb{Z}_{g}
$$

for which the corresponding $X, Y \in \operatorname{Hol}(G)$ generate a regular subgroup of $\operatorname{Hol}(G)$ in \mathcal{F}_{h}.

Each subgroup in the family \mathcal{F}_{h} contains exactly $\gamma \varphi(e) w / \varphi(\delta)$ pairs of generators (X, Y) with

$$
X=\left[\sigma^{a}, \theta^{c}\right], \quad Y=\left[\sigma^{u} \tau, \theta^{\vee} \phi_{t}\right], \quad Y X Y^{-1}=X^{\kappa_{h}}
$$

Let \mathcal{N}_{h} be the set of quintuples

$$
(t, a, c, u, v) \in \mathbb{Z}_{e}^{\times} \times \mathbb{Z}_{e} \times \mathbb{Z}_{g} \times \mathbb{Z}_{e} \times \mathbb{Z}_{g}
$$

for which the corresponding $X, Y \in \operatorname{Hol}(G)$ generate a regular subgroup of $\operatorname{Hol}(G)$ in \mathcal{F}_{h}.

Then

$$
e(\Gamma, G)=\frac{|\operatorname{Aut}(G)|}{|\operatorname{Aut}(\Gamma)|} \sum_{h=1}^{w}\left|\mathcal{N}_{h}\right| \times \frac{\varphi(\delta)}{\gamma \varphi(e) w}
$$

Each subgroup in the family \mathcal{F}_{h} contains exactly $\gamma \varphi(e) w / \varphi(\delta)$ pairs of generators (X, Y) with

$$
X=\left[\sigma^{a}, \theta^{c}\right], \quad Y=\left[\sigma^{u} \tau, \theta^{\vee} \phi_{t}\right], \quad Y X Y^{-1}=X^{\kappa_{h}}
$$

Let \mathcal{N}_{h} be the set of quintuples

$$
(t, a, c, u, v) \in \mathbb{Z}_{e}^{\times} \times \mathbb{Z}_{e} \times \mathbb{Z}_{g} \times \mathbb{Z}_{e} \times \mathbb{Z}_{g}
$$

for which the corresponding $X, Y \in \operatorname{Hol}(G)$ generate a regular subgroup of $\operatorname{Hol}(G)$ in \mathcal{F}_{h}.

Then

$$
e(\Gamma, G)=\frac{|\operatorname{Aut}(G)|}{|\operatorname{Aut}(\Gamma)|} \sum_{h=1}^{w}\left|\mathcal{N}_{h}\right| \times \frac{\varphi(\delta)}{\gamma \varphi(e) w}
$$

We need to calculate $\left|\mathcal{N}_{h}\right|$.

Each subgroup in the family \mathcal{F}_{h} contains exactly $\gamma \varphi(e) w / \varphi(\delta)$ pairs of generators (X, Y) with

$$
X=\left[\sigma^{a}, \theta^{c}\right], \quad Y=\left[\sigma^{u} \tau, \theta^{\vee} \phi_{t}\right], \quad Y X Y^{-1}=X^{\kappa_{h}}
$$

Let \mathcal{N}_{h} be the set of quintuples

$$
(t, a, c, u, v) \in \mathbb{Z}_{e}^{\times} \times \mathbb{Z}_{e} \times \mathbb{Z}_{g} \times \mathbb{Z}_{e} \times \mathbb{Z}_{g}
$$

for which the corresponding $X, Y \in \operatorname{Hol}(G)$ generate a regular subgroup of $\operatorname{Hol}(G)$ in \mathcal{F}_{h}.

Then

$$
e(\Gamma, G)=\frac{|\operatorname{Aut}(G)|}{|\operatorname{Aut}(\Gamma)|} \sum_{h=1}^{w}\left|\mathcal{N}_{h}\right| \times \frac{\varphi(\delta)}{\gamma \varphi(e) w}
$$

We need to calculate $\left|\mathcal{N}_{h}\right|$.
Let

$$
\lambda=z^{-1}(k-1) \in \mathbb{Z}_{g}^{\times}, \quad \mu=k^{-1} \lambda \in \mathbb{Z}_{g}^{\times} .
$$

Then $(t, a, c, u, v) \in \mathcal{N}_{h}$ if and only if, for each prime $q \mid e$, the following congruences mod q are satisfied.

Then $(t, a, c, u, v) \in \mathcal{N}_{h}$ if and only if, for each prime $q \mid e$, the following congruences $\bmod q$ are satisfied.

Primes q	t	a	u	c	v	Number
$q \mid \operatorname{gcd}(z, \gamma)$	κ_{h}	$\not \equiv 0$	arb.			$q(q-1)$
$q \mid \operatorname{gcd}(z, \zeta \delta)$	1	0	$\not \equiv 0$			$q-1$
$q \mid \operatorname{gcd}(g, \gamma)$,	κ_{h}	$\not \equiv 0$	arb.	λa	arb.	$2 q^{2}(q-1)$
$q \notin S_{h} \cup T$	$\kappa_{h} k^{-1}$	$\not \equiv 0$	arb.	0	arb.	
$q \in S_{h}^{+}$	κ_{h}	$\not \equiv 0$	arb.	λa	arb.	$q\left(q^{2}-1\right)$
	$\kappa_{h} k^{-1} \equiv 1$	$\not \equiv 0$	arb.	0	0	
$q \in S_{h}^{-}$	κ_{h}	$\not \equiv 0$	arb.	λa	μu	$q\left(q^{2}-1\right)$
	$\kappa_{h} k^{-1} \equiv \kappa^{2}$	$\not \equiv 0$	arb.	0	arb.	
$q \in T$	$\kappa_{h} \equiv-1$	$\not \equiv 0$	arb.	λa	μu	$2 q(q-1)$
	$\kappa_{h} k^{-1} \equiv 1$	$\not \equiv 0$	arb.	0	0	
$q \mid \operatorname{gcd}(g, \zeta \delta)$	1	0	arb.	0	$\not \equiv 0$	$2 q(q-1)$
	k^{-1}	0	arb.	0	$\not \equiv \mu u$	

Then $(t, a, c, u, v) \in \mathcal{N}_{h}$ if and only if, for each prime $q \mid e$, the following congruences $\bmod q$ are satisfied.

Primes q	t	a	u	c	v	Number
$q \mid \operatorname{gcd}(z, \gamma)$	κ_{h}	$\not \equiv 0$	arb.			$q(q-1)$
$q \mid \operatorname{gcd}(z, \zeta \delta)$	1	0	$\not \equiv 0$			$q-1$
$q \mid \operatorname{gcd}(g, \gamma)$,	κ_{h}	$\not \equiv 0$	arb.	λa	arb.	$2 q^{2}(q-1)$
$q \notin S_{h} \cup T$	$\kappa_{h} k^{-1}$	$\not \equiv 0$	arb.	0	arb.	
$q \in S_{h}^{+}$	κ_{h}	$\not \equiv 0$	arb.	λa	arb.	$q\left(q^{2}-1\right)$
	$\kappa_{h} k^{-1} \equiv 1$	$\not \equiv 0$	arb.	0	0	
$q \in S_{h}^{-}$	κ_{h}	$\not \equiv 0$	arb.	λa	μu	$q\left(q^{2}-1\right)$
	$\kappa_{h} k^{-1} \equiv \kappa^{2}$	$\not \equiv 0$	arb.	0	arb.	
$q \in T$	$\kappa_{h} \equiv-1$	$\not \equiv 0$	arb.	λa	μu	$2 q(q-1)$
	$\kappa_{h} k^{-1} \equiv 1$	$\not \equiv 0$	arb.	0	0	
$q \mid \operatorname{gcd}(g, \zeta \delta)$	1	0	arb.	0	$\not \equiv 0$	$2 q(q-1)$
	k^{-1}	0	arb.	0	$\not \equiv \mu u$	

Multiplying the contributions for each q, we can find $\left|\mathcal{N}_{q}\right|$ and hence complete the proof of Theorem 2.

To count skew braces, we need count $\operatorname{Aut}(G)$-orbits of regular subgroups of $\operatorname{Hol}(G)$.

To count skew braces, we need count $\operatorname{Aut}(G)$-orbits of regular subgroups of $\operatorname{Hol}(G)$.

Thus, for each $(t, a, c, u, v) \in \mathcal{N}_{h}$, we must weight the corresponding regular subgroup by $1 / I(t, a, c, u v)$, where $I(t, a, c, u, v)$ is the index in $\operatorname{Aut}(G)$ of the stabiliser of the subgroup.

To count skew braces, we need count $\operatorname{Aut}(G)$-orbits of regular subgroups of $\operatorname{Hol}(G)$.

Thus, for each $(t, a, c, u, v) \in \mathcal{N}_{h}$, we must weight the corresponding regular subgroup by $1 / I(t, a, c, u v)$, where $I(t, a, c, u, v)$ is the index in $\operatorname{Aut}(G)$ of the stabiliser of the subgroup.

$$
b(\Gamma, G)=\frac{\varphi(\delta)}{\gamma \varphi(e) w} \sum_{h=1}^{w} \sum_{(t, a, c, u, v) \in \mathcal{N}_{h}} \frac{1}{l(t, a, c, u, v)} .
$$

To count skew braces, we need count $\operatorname{Aut}(G)$-orbits of regular subgroups of $\operatorname{Hol}(G)$.

Thus, for each $(t, a, c, u, v) \in \mathcal{N}_{h}$, we must weight the corresponding regular subgroup by $1 / I(t, a, c, u v)$, where $I(t, a, c, u, v)$ is the index in $\operatorname{Aut}(G)$ of the stabiliser of the subgroup.

$$
b(\Gamma, G)=\frac{\varphi(\delta)}{\gamma \varphi(e) w} \sum_{h=1}^{w} \sum_{(t, a, c, u, v) \in \mathcal{N}_{h}} \frac{1}{l(t, a, c, u, v)} .
$$

$I(t, a, c, u, v)$ is a product of contributions I_{q} for each prime $q \mid e$, but we need to partition these primes more finely than before.

Primes q	t	a	u	c	v	Index	Number
$q \mid \operatorname{gcd}(g, \delta)$	1	0	arb.	0	$\not \equiv 0$	$q(q-1)$	$2 q(q-1)$
	k^{-1}	0	arb.	0	$\not \equiv \mu u$		
$q \mid \operatorname{gcd}(z, \delta)$	1	0	$\not \equiv 0$			$q-1$	$q-1$
$q \mid \operatorname{gcd}(g, \gamma)$	κ_{h}	$\not \equiv 0$	arb.	λa	arb.	q	$2 q^{2}(q-1)$
$q \notin S_{h} \cup T$	$\kappa_{h} k^{-1}$	$\not \equiv 0$	arb.	0	arb.		
$q \in S_{h}^{+}, t \equiv \kappa_{h}$	κ_{h}	$\not \equiv 0$	arb.	λa	arb.	q	$q^{2}(q-1)$
$q \in S_{h}^{+}, t \equiv 1$	1	$\not \equiv 0$	arb.	0	0	1	$q(q-1)$
$q \in S_{h}^{-}, t \equiv \kappa_{h}$	κ_{h}	$\not \equiv 0$	arb.	λa	μu	1	$q(q-1)$
$q \in S_{h}^{-}, t \equiv \kappa_{h} k^{-1}$	$\kappa_{h} k^{-1}$	$\not \equiv 0$	arb.	0	arb.	q	$q^{2}(q-1)$
$q \in T$	1	$\not \equiv 0$	arb.	0	0	1	$2 q(q-1)$
	-1	$\not \equiv 0$	arb.	λa	μa		
$q \mid \operatorname{gcd}(z, \gamma)$	κ_{h}	$\not \equiv 0$	arb.			1	$q(q-1)$
$q \mid \operatorname{gcd}(g, \zeta)$	1	0	arb.	0	$\not \equiv 0$	q	$2 q(q-1)$
	k^{-1}	0	arb.	0	$\not \equiv \mu u$		
$q \mid(z, \zeta)$	1	0	$\not \equiv 0$			1	$q-1$

If $q \in S_{h}^{+}$then we have $q^{2}(q-1)$ quintuples $\bmod q$ with $t \equiv \kappa_{h}$ and $q(q-1)$ quintuples with $t \equiv 1$, but I_{q} is q or 1 respectively.

If $q \in S_{h}^{+}$then we have $q^{2}(q-1)$ quintuples $\bmod q$ with $t \equiv \kappa_{h}$ and $q(q-1)$ quintuples with $t \equiv 1$, but I_{q} is q or 1 respectively. Similarly for S_{h}^{-}.

If $q \in S_{h}^{+}$then we have $q^{2}(q-1)$ quintuples $\bmod q$ with $t \equiv \kappa_{h}$ and $q(q-1)$ quintuples with $t \equiv 1$, but I_{q} is q or 1 respectively.
Similarly for S_{h}^{-}.
Take arbitrary subsets $A \subseteq S_{h}^{+}, B \subseteq S_{h}^{-}$, and let $N_{h}(A, B)$ be the number of quintuples in \mathcal{N}_{h} with

$$
\left\{q \in S_{h}^{+}: t \equiv 1 \quad(\bmod q)\right\}=A ; \quad\left\{q \in S_{h}^{-}: t \equiv \kappa_{h} \quad(\bmod q)\right\}=B
$$

If $q \in S_{h}^{+}$then we have $q^{2}(q-1)$ quintuples $\bmod q$ with $t \equiv \kappa_{h}$ and $q(q-1)$ quintuples with $t \equiv 1$, but I_{q} is q or 1 respectively.
Similarly for S_{h}^{-}.
Take arbitrary subsets $A \subseteq S_{h}^{+}, B \subseteq S_{h}^{-}$, and let $N_{h}(A, B)$ be the number of quintuples in \mathcal{N}_{h} with

$$
\left\{q \in S_{h}^{+}: t \equiv 1 \quad(\bmod q)\right\}=A ; \quad\left\{q \in S_{h}^{-}: t \equiv \kappa_{h} \quad(\bmod q)\right\}=B
$$

Let $I_{h}(A, B)$ be the index of the stabiliser of each of these subgroups. Then

$$
b(\Gamma, G)=\frac{\varphi(\delta)}{\gamma \varphi(e) w} \sum_{h=1}^{w} \sum_{A, B} \frac{N_{h}(A, B)}{I_{h}(A, B)} .
$$

If $q \in S_{h}^{+}$then we have $q^{2}(q-1)$ quintuples $\bmod q$ with $t \equiv \kappa_{h}$ and $q(q-1)$ quintuples with $t \equiv 1$, but I_{q} is q or 1 respectively.
Similarly for S_{h}^{-}.
Take arbitrary subsets $A \subseteq S_{h}^{+}, B \subseteq S_{h}^{-}$, and let $N_{h}(A, B)$ be the number of quintuples in \mathcal{N}_{h} with

$$
\left\{q \in S_{h}^{+}: t \equiv 1 \quad(\bmod q)\right\}=A ; \quad\left\{q \in S_{h}^{-}: t \equiv \kappa_{h} \quad(\bmod q)\right\}=B
$$

Let $I_{h}(A, B)$ be the index of the stabiliser of each of these subgroups. Then

$$
b(\Gamma, G)=\frac{\varphi(\delta)}{\gamma \varphi(e) w} \sum_{h=1}^{w} \sum_{A, B} \frac{N_{h}(A, B)}{I_{h}(A, B)} .
$$

The contribution of q to $N_{h}(A, B) / I_{h}(A, B)$ is $q(q-1)$ for all $q \in S_{h}^{+} \cup S_{h}^{-}$and is $2 q(q-1)$ for all other $q \mid \operatorname{gcd}(g, \gamma)$.

If $q \in S_{h}^{+}$then we have $q^{2}(q-1)$ quintuples $\bmod q$ with $t \equiv \kappa_{h}$ and $q(q-1)$ quintuples with $t \equiv 1$, but I_{q} is q or 1 respectively.
Similarly for S_{h}^{-}.
Take arbitrary subsets $A \subseteq S_{h}^{+}, B \subseteq S_{h}^{-}$, and let $N_{h}(A, B)$ be the number of quintuples in \mathcal{N}_{h} with

$$
\left\{q \in S_{h}^{+}: t \equiv 1 \quad(\bmod q)\right\}=A ; \quad\left\{q \in S_{h}^{-}: t \equiv \kappa_{h} \quad(\bmod q)\right\}=B
$$

Let $I_{h}(A, B)$ be the index of the stabiliser of each of these subgroups. Then

$$
b(\Gamma, G)=\frac{\varphi(\delta)}{\gamma \varphi(e) w} \sum_{h=1}^{w} \sum_{A, B} \frac{N_{h}(A, B)}{I_{h}(A, B)} .
$$

The contribution of q to $N_{h}(A, B) / I_{h}(A, B)$ is $q(q-1)$ for all $q \in S_{h}^{+} \cup S_{h}^{-}$and is $2 q(q-1)$ for all other $q \mid \operatorname{gcd}(g, \gamma)$.
Summing over A and B restores the "missing" factor 2 so all primes $q \mid \operatorname{gcd}(g, \gamma)$ give the same contribution.

Multiplying the contributions for all $q \mid e$, and simplifying, we obtain the simple formula

$$
b(\Gamma, G)= \begin{cases}2^{\omega(g)} w & \text { if } \gamma \mid e \\ 0 & \text { if } \gamma \nmid e\end{cases}
$$

proving Theorem 1.

Thank you for listening!

